Search results for "Riemann solver"
showing 10 items of 22 documents
On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes
2016
We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfven waves, and the tearing mode instability using the MHD code Aenus. By comparing the simu- lation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of tearing modes we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast-magnetosonic speed and wavelength are the characteristic velocity and length, respectively, of the aforementioned (relatively simple) syst…
3D Relativistic Hydrodynamics
2007
We review the evolution of the numerical techniques applied in relativistic hydrodynamics since the sixties until today. We focus our attention on the state-of- the-art high-resolution shock-capturing methods and the astrophysical applications involving three-dimensional simulations.
Relativistic Magnetohydrodynamics: Renormalized eigenvectors and full wave decomposition Riemann solver
2010
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wavefront in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as…
An Exact Riemann Solver for Multidimensional Special Relativistic Hydrodynamics
2001
We have generalised the exact solution of the Riemann problem in special relativistic hydrodynamics (Marti and Muller, 1994) for arbitrary tangential flow velocities. The solution is obtained by solving the jump conditions across shocks plus an ordinary differential equation arising from the self-similarity condition along rarefaction waves, in a similar way as in purely normal flow. This solution has been used to build up an exact Riemann solver implemented in a multidimensional relativistic (Godunov-type) hydro-code.
Numerical evolution of matter in dynamical axisymmetric black hole spacetimes
2000
We have developed a numerical code to study the evolution of self-gravitating matter in dynamic black hole axisymmetric spacetimes in general relativity. The matter fields are evolved with a high-resolution shock-capturing scheme that uses the characteristic information of the general relativistic hydrodynamic equations to build up a linearized Riemann solver. The spacetime is evolved with an axisymmetric ADM code designed to evolve a wormhole in full general relativity. We discuss the numerical and algorithmic issues related to the effective coupling of the hydrodynamical and spacetime pieces of the code, as well as the numerical methods and gauge conditions we use to evolve such spacetime…
The Numerical Simulation of Relativistic Fluid Flow with Strong Shocks
2001
In this review we present and analyze the performance of a Go-dunov type method applied to relativistic fluid flow. Our model equations are the corresponding Euler equations for special relativistic hydrodynamics. By choosing an appropriate vector of unknowns, the equations of special relativistic fluid dynamics (RFD) can be written as a hyperbolic system of conservation laws. We give a complete description of the spectral decomposition of the Jacobian matrices associated to the fluxes in each spatial direction, (see (Donat et al., 1998), for details), which is the essential ingredient of the Godunov-type numerical method we propose in this paper. We also review a numerical flux formula tha…
Upwind Relativistic MHD Code for Astrophysical Applications
2003
We describe the status of devolpment of a 2.5D numerical code to solve the equations of ideal relativistic magnetohydrodynamics. The numerical code, based on high-resolution shock-capturing techniques, solves the equations written in conservation form and computes the numerical fluxes using a linearized Riemann solver. A special procedure is used to force the conservation of magnetic flux along the evolution.
A Divergence-Free High-Resolution Code for MHD
2001
We describe a 2.5D numerical code to solve the equations of ideal magnetohydrodynamics (MHD). The numerical code, based on high-resolution shock-capturing (HRSC) techniques, solves the equations written in conservation form and computes the numerical fluxes using a linearized Riemann solver. A special procedure is used to force the conservation of magnetic flux along the time.
Equilibrium real gas computations using Marquina's scheme
2003
Marquina's approximate Riemann solver for the compressible Euler equations for gas dynamics is generalized to an arbitrary equilibrium equation of state. Applications of this solver to some test problems in one and two space dimensions show the desired accuracy and robustness
A multidimensional hydrodynamic code for structure evolution in cosmology
1996
A cosmological multidimensional hydrodynamic code is described and tested. This code is based on modern high-resolution shock-capturing techniques. It can make use of a linear or a parabolic cell reconstruction as well as an approximate Riemann solver. The code has been specifically designed for cosmological applications. Two tests including shocks have been considered: the first one is a standard shock tube and the second test involves a spherically symmetric shock. Various additional cosmological tests are also presented. In this way, the performance of the code is proved. The usefulness of the code is discussed; in particular, this powerful tool is expected to be useful in order to study…