Search results for "Rydberg formula"
showing 10 items of 93 documents
Probing Rydberg atoms through collisions with helium in the presence of static electric and magnetic fields
2005
We report on field induced inelasticity effects in state-to-state transitions caused by collisions of helium with Rydberg atoms in the presence of parallel static electric and magnetic fields. Due to the phases accumulated by the wavefunctions of the states involved into the collision events, the transition cross sections plotted as a function of the external fields exhibit modulations. When the relative velocity of the colliding atoms is high enough, these modulations are wiped out, while sizable modifications of the cross sections may take place due to the alteration of the wavefunctions' spatial localization. The possibility of using the field-assisted collisions as a probe giving inform…
Controlling the interactions of a few cold Rb Rydberg atoms by radiofrequency-assisted F\"orster resonances
2014
Long-range interactions between cold Rydberg atoms, which are used in many important applications, can be enhanced using F\"orster resonances between collective many-body states controlled by an external electric field. Here we report on the first experimental observation of highly-resolved radio-frequency-assisted F\"orster resonances in a few cold Rb Rydberg atoms. We also observed radio-frequency-induced F\"orster resonances which cannot be tuned by a dc electric field. They imply an efficient transition from van der Waals to resonant dipole-dipole interaction due to Floquet sidebands of Rydberg levels appearing in the rf-field. This method can be applied to enhance the interactions of a…
AC-Stark shift and photoionization of Rydberg atoms in an optical dipole trap
2010
We have measured the AC-Stark shift of the $14D_{5/2}$ Rydberg state of rubidium 87 in an optical dipole trap formed by a focussed CO$_2$-laser. We find good quantitative agreement with the model of a free electron experiencing a ponderomotive potential in the light field. In order to reproduce the observed spectra we take into account the broadening of the Rydberg state due to photoionization. The extracted cross-section is compatible with previous measurements on neighboring Rydberg states.
Rydberg Series Excitation of a Single Trapped Ca+40 Ion for Precision Measurements and Principal Quantum Number Scalings
2021
A complete set of spectroscopic data is indispensable when using Rydberg states of trapped ions for quantum information processing. We carried out Rydberg series spectroscopy for $n{S}_{1/2}$ states with $38\ensuremath{\le}n\ensuremath{\le}65$ and for $n{D}_{5/2}$ states with $37\ensuremath{\le}n\ensuremath{\le}50$ on a single trapped $^{40}{\mathrm{Ca}}^{+}$ ion. We determined the ionization energy of 2 870 575.582(15) GHz, 60 times more accurately as compared to the accepted value and contradicting it by 7.5 standard deviations. We confirm quantum defect values of ${\ensuremath{\delta}}_{{S}_{1/2}}=1.802\text{ }995(5)$ and ${\ensuremath{\delta}}_{{D}_{5/2}}=0.626\text{ }888(9)$ for $n{S}_…
A semiconductor laser system for the production of antihydrogen
2012
Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Las er excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-e xchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the resul…
Isotope shifts and hyperfine structure in calcium 4snp and 4snf F Rydberg states
2000
Isotope shifts and hyperfine structure have been measured in 4snp 1 P1 and Rydberg states for all stable calcium isotopes and the radioisotope 41Ca using high-resolution laser spectroscopy. Triple-resonance excitation via Rydberg state was followed by photoionization with a CO2 laser and mass selective ion detection. Isotope shifts for the even-mass isotopes have been analyzed to derive specific mass shift and field shift factors. The apparent isotope shifts for 41Ca and 43Ca exhibit anomalous values that are n-dependent. This is interpreted in terms of hyperfine-induced fine-structure mixing, which becomes very pronounced when singlet-triplet fine-structure splitting is comparable to the h…
High resolution spectroscopy of rydberg states in indium I
1985
Two-photon laser spectroscopy in a dense indium vapour allowed to investigatenp2P1/2, 3/2 states (n=27–35) for113, 115In with a thermionic diode. Precise data on the fine structure splitting of these states and the isotope shift of the two photon transitions have been obtained. The fine structure splitting shows a hydrogenic behaviour. By using the result of our isotope shift measurement in combination with literature values, level isotope shifts with reference to the ionization limit are deduced and analysed with respect to the different contributions.
Engineering NonBinary Rydberg Interactions via Phonons in an Optical Lattice
2019
Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body interactions which are controllable through the strength of the local confinement. This approach even permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on system ground state on a square lattice. Focus…
Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation.
2012
Efficient continuous-wave four-wave mixing by using three different fundamental wavelengths with individual detunings to resonances of the nonlinear medium is shown. Up to 6 μW of vacuum ultraviolet light at 121 nm can be generated, which corresponds to an increase of three orders of magnitude in efficiency. This opens the field of quantum information processing by Rydberg entanglement of trapped ions.
Resonant three-photon ionization spectroscopy of atomic Fe
2013
Laser spectroscopic investigations on high-lying states around the ionization potential (IP) in the atomic spectrum of Fe have been carried out for the development of a practical three-step resonance ionization scheme accessible by Ti: sapphire lasers. A hot cavity laser ion source, typically used at on-line radioactive ion beam production facilities, was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63 737.68…