Search results for "SCA"

showing 10 items of 23299 documents

Modelling Complex Volume Shape Using Ellipsoid: Application to Pore Space Representation

2017

Natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In this study we consider the representation of the porous media. Thanks to the technological advances in Computed Topography scanners, the acquisition of images of complex shapes becomes possible. However, and unfortunately, the image data is not directly usable for simulation purposes. In this paper, we investigate the modeling of such shapes using a piece wise approximation of image data by ellipsoids. We propose to use a split-merge strategy and a…

010504 meteorology & atmospheric sciencesScale (ratio)Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONTangentApproximation algorithmContext (language use)02 engineering and technologyComputational geometry01 natural sciencesEllipsoid0202 electrical engineering electronic engineering information engineeringPiecewise020201 artificial intelligence & image processingRepresentation (mathematics)AlgorithmComputingMethodologies_COMPUTERGRAPHICS0105 earth and related environmental sciences2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)
researchProduct

Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies

2020

National audience

010504 meteorology & atmospheric sciencesScale (ratio)Geography Planning and Development0211 other engineering and technologies021107 urban & regional planning02 engineering and technologyUniversal law01 natural sciences[SDE]Environmental Sciences11. SustainabilitySustainabilityEconomic geographyBusinessComputingMilieux_MISCELLANEOUSPace of life0105 earth and related environmental sciencesPlanning Theory
researchProduct

Testing simple scaling in soil erosion processes at plot scale

2018

Abstract Explaining scale effects for runoff and erosion improves our understanding and simulation ability of hydrological and erosion processes. In this paper, plot scale effects on event runoff per unit area (Qe), sediment concentration (Ce) and soil loss per unit area (SLe) were checked at El Teularet-Sierra de Enguera experimental site in Eastern Spain. The measurements were carried out for 31 events occurring in the years 2005 and 2007 in bare ploughed plots ranging from 1 to 48 m2. The analysis established the scaling relationship by dimensional analysis and self-similarity theory, and tested this relationship at different temporal scales ranging from event to annual scale. The dimens…

010504 meteorology & atmospheric sciencesScale (ratio)Runoff0208 environmental biotechnologySoil scienceNatural rainfall02 engineering and technology01 natural sciencesHydrology (agriculture)Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliTemporal scalesScaling0105 earth and related environmental sciencesEarth-Surface ProcessesPlotsSedimentPE&RC020801 environmental engineeringScalePlotSediment concentrationSpatial ecologyErosionSoil erosionEnvironmental scienceSurface runoff
researchProduct

Applying the USLE Family of Models at the Sparacia (South Italy) Experimental Site

2016

Soil erosion is a key process to understand the land degradation, and modelling of soil erosion will help to understand the process and to foresee its impacts. The applicability of the Universal Soil Loss Equation (USLE) at event scale is affected by the fact that USLE rainfall erosivity factor does not take into account runoff explicitly. USLE-M and USLE-MM, including the effect of runoff in the event rainfall– runoff erosivity factor, are characterized by a better capacity to predict event soil loss. The specific objectives of this paper were (i) to determine the suitable parameterization of USLE, USLE-M and USLE-MM by using the dataseries of Sparacia experimental site and (ii) to evaluat…

010504 meteorology & atmospheric sciencesScale (ratio)Soil ScienceSoil scienceDevelopment01 natural sciencesDeposition (geology)Soil lossplot soil loUSLE-MMSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliEnvironmental Chemistry0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)Hydrologysoil erosionSediment04 agricultural and veterinary sciencesUniversal Soil Loss Equation040103 agronomy & agricultureLand degradationUSLE-M0401 agriculture forestry and fisheriesEnvironmental scienceSurface runoffEvent scaleLand Degradation & Development
researchProduct

PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

2017

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …

010504 meteorology & atmospheric sciencesScattering albedo0208 environmental biotechnologyradiometry02 engineering and technologyretrieval methodologycomputer.software_genre01 natural scienceslaw.inventionlawremote sensing by radarRadaractive-passive microwavesPhysics::Atmospheric and Oceanic PhysicsIndexespassive microwave remote sensingRemote sensingremote sensing by laser beamGeographyLidaroptical radarcrucial parametersmedicine.symptomvegetation scattering coefficientData integrationBackscattervegetation mappingta1171τ-ω modelsoilPhysics::GeophysicsICESat lidar vegetation heightsvegetationmedicineVegetation optical depthbackscatter0105 earth and related environmental sciencesRemote sensingsensor fusionRadiometerScatteringnovel multisensor approachSMAPAlbedoMulti-sensor020801 environmental engineeringradiometer dataVegetation (pathology)multisensor data integration approachcomputerICESatalbedo
researchProduct

SMOS-IC : a revised SMOS product based on a new effective scattering albedo and soil roughness parameterization

2017

International audience; This study presents a new SMOS (Soil Moisture and Ocean Salinity) soil moisture (SM) product based on a different scattering albedo and soil roughness parameterization: the SMOS-IC (SMOS INRA-CESBIO) data set. In this study, several parameterizations of the vegetation and soil roughness parameters (co, H-R and N-RP, P = H, V) were tested and the retrieved SM was compared against in situ observations obtained from the International Soil Moisture Network (ISMN). Firstly, values of omega = 0.10, H-R = 0.4 and N-RP = -1 (P = H, V) were found globally. Secondly, a calibration of these parameters was obtained for the different land cover categories of the International Geo…

010504 meteorology & atmospheric sciencesScattering[SDV]Life Sciences [q-bio]0211 other engineering and technologies02 engineering and technologyLand coverVegetation15. Life on landAlbedoAtmospheric sciences01 natural sciences13. Climate actionProduct (mathematics)[SDE]Environmental SciencesCalibrationEnvironmental scienceWater contentSoil roughness021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

An Integrated Multiscale Method for the Characterisation of Active Faults in Offshore Areas. The Case of Sant’Eufemia Gulf (Offshore Calabria, Italy)

2021

Diagnostic morphological features (e.g., rectilinear seafloor scarps) and lateral offsets of the Upper Quaternary deposits are used to infer active faults in offshore areas. Although they deform a significant seafloor region, the active faults are not necessarily capable of producing large earthquakes as they correspond to shallow structures formed in response to local stresses. We present a multiscale approach to reconstruct the structural pattern in offshore areas and distinguish between shallow, non-seismogenic, active faults, and deep blind faults, potentially associated with large seismic moment release. The approach is based on the interpretation of marine seismic reflection data and …

010504 meteorology & atmospheric sciencesSettore GEO/02 - Geologia Stratigrafica E SedimentologicaScienceSettore GEO/03 - Geologia StrutturaleInversion (geology)Active faultSlab-tear faultLate MioceneCalabrian arc (Italy)010502 geochemistry & geophysicsFault scarp01 natural sciencesPaleontologymorphotectonic analysiMorphotectonic analysisHigh-resolution seismic dataBathymetry0105 earth and related environmental sciencesActive tectonicsactive tectonicQAnticlineSeafloor spreadingTectonicsGeneral Earth and Planetary SciencesGeologySouthern tyrrhenian sea
researchProduct

Predicting plot soil loss by empirical and process-oriented approaches. A review

2018

Soil erosion directly affects the quality of the soil, its agricultural productivity and its biological diversity. Many mathematical models have been developed to estimate plot soil erosion at different temporal scales. At present, empirical soil loss equations and process-oriented models are considered as constituting a complementary suite of models to be chosen to meet the specific user need. In this paper, the Universal Soil Loss Equation and its revised versions are first reviewed. Selected methodologies developed to estimate the factors of the model with the aim to improve the soil loss estimate are described. Then the Water Erosion Prediction Project which represents a process-oriente…

010504 meteorology & atmospheric sciencesSoil erosion; Soil loss measurements; Universal soil loss equation; Water erosion prediction project; Bioengineering; Mechanical Engineering; Industrial and Manufacturing EngineeringBioengineeringSoil science01 natural sciencesIndustrial and Manufacturing EngineeringPlot (graphics)lcsh:Agriculturewater erosion prediction project.Soil loss measurementSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalilcsh:Agriculture (General)Temporal scalesReliability (statistics)0105 earth and related environmental sciencesgeographysoil loss measurementsgeography.geographical_feature_categoryPhysical modelMathematical modelMechanical EngineeringWater erosion prediction projectlcsh:S04 agricultural and veterinary sciencesUniversal Soil Loss Equationlcsh:S1-972RillUniversal Soil Loss EquationSoil erosion040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceSpatial variability
researchProduct

High‐resolution stimulated Raman spectroscopy and analysis of line positions and assignments for the ν 2 and ν 3 bands of 13 C 2 H 4

2016

High-resolution stimulated Raman spectra of13C2H4 in the regions of the ν2 and ν3 Raman active modes have been recorded at two temperatures (145 and 296 K) based on the quasi continuous-wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia IEM-CSIC in Madrid. A tensorial formalism adapted to X2Y4 planar asymmetric tops with D2h symmetry (developed in Dijon) and a program suite called D2hTDS (now part of the XTDS/SPVIEW spectroscopic software) were proposed to analyze and calculate the high-resolution spectra. A total of 103 and 51 lines corresponding to ν2 and ν3 Raman active modes have been assigned and fitted in wavenumber with a global root mean square deviatio…

010504 meteorology & atmospheric sciencesSpectrometerChemistryAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral linesymbols.namesakePlanarsymbolsWavenumberGeneral Materials ScienceAtomic physics0210 nano-technologySpectroscopyRaman spectroscopyRoot-mean-square deviationSpectroscopyRaman scattering0105 earth and related environmental sciencesJournal of Raman Spectroscopy
researchProduct

2018

Abstract. Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image proce…

010504 meteorology & atmospheric sciencesStratigraphyAttenuationFlow (psychology)Clathrate hydratePaleontologySoil ScienceMineralogyGeology010502 geochemistry & geophysics01 natural sciencesSynchrotronlaw.inventionGeophysicsGeochemistry and PetrologylawHydrate bearing sedimentsHydrateQuartzGeologyMicroscale chemistry0105 earth and related environmental sciencesEarth-Surface ProcessesSolid Earth
researchProduct