Search results for "SCAD"

showing 10 items of 348 documents

Role of mitochondria in parvovirus pathology.

2014

Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by rep…

PathologyvirusesCelllcsh:MedicineMitochondrionSignal transductionERK signaling cascadeMolecular cell biologyInner mitochondrial membraneExtracellular Signal-Regulated MAP Kinaseslcsh:SciencepatologiaCellular Stress ResponsesMembrane Potential MitochondrialMultidisciplinarybiologyCell DeathCanine parvovirusapoptosisSignaling cascadesCellular StructuresCell biologyMitochondriaHost-Pathogen Interactionmedicine.anatomical_structureMitochondrial MembranesResearch Articlemedicine.medical_specialtyViral EntryParvovirus CanineMAP Kinase Signaling SystemmitokondriotMicrobiologyCell LineParvoviridae InfectionsDogsViral entryVirologymedicineAnimalsBiologysoluviestintäParvovirusta1183parvoviruslcsh:Rta1182biology.organism_classificationMolecular biologyEnzyme ActivationViral replicationSubcellular OrganellesApoptosisCatsCalciumlcsh:QReactive Oxygen SpeciesViral Transmission and InfectionPLoS ONE
researchProduct

Experimental and Theoretical Investigations on Structural and Vibrational Properties of Melilite-Type Sr2ZnGe2O7 at High Pressure and Delineation of …

2015

We report a combined experimental and theoretical study of melilite-type germanate, Sr2ZnGe2O7, under compression. In situ high-pressure X-ray diffraction and Raman scattering measurements up to 22 GPa were complemented with first-principles theoretical calculations of structural and lattice dynamics properties. Our experiments show that the tetragonal structure of Sr2ZnGe2O7 at ambient conditions transforms reversibly to a monoclinic phase above 12.2 Gpa with similar to 1% volume drop at the phase transition pressure. Density functional calculations indicate the transition pressure at, similar to 13 GPa, which agrees well with the experimental value. The structure of the high-pressure mono…

Phase transitionThermodynamicsengineering.materialMagnetic-PropertiesInorganic ChemistryCondensed Matter::Materials ScienceTetragonal crystal systemX-Ray DiffractionNatural meliliteGermanatePhysical and Theoretical ChemistryCrystal-StructureThermal-ExpansionAkermaniteLow-TemperatureChemistryRaman-SpectraMeliliteSolid-SolutionFISICA APLICADACompressibilityengineeringCondensed Matter::Strongly Correlated ElectronsCascaded CHI((3))Ambient pressureSolid solutionMonoclinic crystal systemInorganic chemistry
researchProduct

Gamma Ray Spectrum from Thermal Neutron Capture on Gadolinium-157

2018

International audience; We have measured the |$\gamma$|-ray energy spectrum from the thermal neutron capture, |${}^{157}$|Gd|$(n,\gamma)$|⁠, on an enriched |$^{157}$|Gd target (Gd|$_{2}$|O|$_{3}$|⁠) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources (⁠|$^{60}$|Co, |$^{137}$|Cs, and |$^{152}$|Eu) and the |$^{35}$|Cl(⁠|$n$|⁠,|$\gamma$|⁠) reaction were used to determine the spectrometer‘s detection efficiency for |$\gamma$| rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of …

PhotonPhysics - Instrumentation and DetectorsMonte Carlo methodGeneral Physics and Astronomy7. Clean energy01 natural sciencesnuclear reactionSpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)H43 Software architectures[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]n: fissionNuclear Experiment (nucl-ex)n: captureNuclear ExperimentNuclear ExperimentPhysicsdensityJ-PARC LabphotonGamma rayInstrumentation and Detectors (physics.ins-det)Atomic physicsnumerical calculations: Monte CarloSpallation Neutron SourceNeutron captureAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumchemistry.chemical_elementFOS: Physical sciencesGermanium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]n: thermalF20 Instrumentation and technique0103 physical sciencesModels of nuclear reactions[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutron capture gamma ray cascade Models of nuclear reactions Neutrinos from supernova remnant010306 general physicsD21 Models of nuclear reactionsgamma ray cascadeSpectrometer010308 nuclear & particles physicsnucleusNeutron radiationH20 Instrumentation for underground experiments* Automatic Keywords *germaniumF22 Neutrinos from supernova remnant and other astronomical objectschemistryn: beamNeutrinos from supernova remnantefficiencygamma rayspectrometerC43 Underground experimentsgadolinium
researchProduct

Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory

2008

A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…

Photon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyFluxFOS: Physical sciencesOsservatorio Pierre AugerCosmic rayFotonesAstrophysicsAstrophysics7. Clean energy01 natural sciencesAugerNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)Raggi cosmiciultra high energy photonsCascada atmosféricaObservatory0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatoryPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsPierre Auger ObservatoryEnergia ultra altaCosmic rayHigh Energy Physics - PhenomenologyPair production13. Climate actionFotoniExperimental High Energy Physicsddc:540flux upper limitNeutrinoSciami atmosferici estesi
researchProduct

Gamma Ray Spectra from Thermal Neutron Capture on Gadolinium-155 and Natural Gadolinium

2019

Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: $^{\rm 155}$Gd and $^{\rm 157}$Gd. We measured the $\gamma$-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched $^{\rm 155}$Gd (in Gd$_{2}$O$_{3}$ powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analysed data of the $^{\rm 155}$Gd(n, $\gamma$) reaction are used to improve our previously developed model (ANNRI-Gd model) for the $^{\rm 157}$Gd(n, $\gamma$) reaction, and its performance confirmed with the independent data from the $^{\r…

Physics - Instrumentation and DetectorsGadoliniumMonte Carlo methodAnalytical chemistryenergy spectrumGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesGermanium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]n: thermal7. Clean energy01 natural sciencesSpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)F20 Instrumentation and technique0103 physical sciencesH43 Software architectures[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)n: capture010306 general physicsNuclear ExperimentMonte CarloPhysicsD21 Models of nuclear reactionsIsotopeSpectrometer010308 nuclear & particles physicsJ-PARC LabGamma rayInstrumentation and Detectors (physics.ins-det)Gadolinium neutron capture gamma ray cascadeNeutron temperature3. Good healthparticle: interactionH20 Instrumentation for underground experimentsgermaniumF22 Neutrinos from supernova remnant and other astronomical objectsC42 Reactor experimentschemistrygamma rayC43 Underground experimentsspectrometergadoliniumperformance
researchProduct

2020

Organisms use photo-receptors to react to light. The first step is usually the absorption of a photon by a prosthetic group embedded inside the photo-receptor, often a conjugated chromophore. The electronic changes in the chromophore induced by photo-absorption can trigger a cascade of structural or chemical transformations that culminate into a response to light. Understanding how these proteins have evolved to mediate their activation process has remained challenging because the required time and spacial resolutions are notoriously difficult to achieve experimentally. Therefore, mechanistic insights into photoreceptor activation have been predominantly obtained with computer simulations. …

Physics0303 health sciencesChromophore03 medical and health sciencesMolecular dynamics0302 clinical medicineStructural BiologyCascadeChemical physicssense organsAdiabatic processMolecular Biology030217 neurology & neurosurgery030304 developmental biologyCurrent Opinion in Structural Biology
researchProduct

Universal decay cascade model for dynamic quantum dot initialization.

2009

Dynamic quantum dots can be formed by time-dependent electrostatic potentials in nanoelectronic devices, such as gate- or surface-acoustic-wave-driven electron pumps. Ability to control the number of captured electrons with high precision is required for applications in fundamental metrology and quantum information processing. In this work we propose and quantify a scheme to initialize quantum dots with a controllable number of electrons. It is based on the stochastic decrease in the electron number of a shrinking dynamic quantum dot and is described by a nuclear decay cascade model with "isotopes" being different charge states of the dot. Unlike the natural nuclei, the artificial confineme…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciencesGeneral Physics and AstronomyInitializationCoulomb blockade02 engineering and technologyDecoupling (cosmology)Electron021001 nanoscience & nanotechnology01 natural sciencesComputational physicsCondensed Matter - Strongly Correlated ElectronsQuantum dotCascadeQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMaster equationProbability distribution010306 general physics0210 nano-technologyPhysical review letters
researchProduct

Cascade decays of triplet Higgs bosons at LEP2

1998

We study the Georgi-Machacek two triplet, one doublet model in the context of LEP2, and show that cascade decays of Higgs bosons to lighter Higgs bosons and a virtual vector boson may play a major role. Such decays would allow the Higgs bosons of this model to escape current searches, and in particular are of great importance for the members of the five-plet which will always decay to the three-plet giving rise to cascade signatures.

PhysicsCondensed Matter::Quantum GasesNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFOS: Physical sciencesContext (language use)Vector bosonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)CascadeHiggs bosonHigh Energy Physics::ExperimentBoson
researchProduct

Spin distribution measurement for 64Ni + 100Mo at near and above barrier energies

2015

Spin distribution measurements were performed for the reaction 64 Ni + 100 Mo at three beam energies ranging from 230 to 260 MeV. Compound nucleus (CN) spin distributions were obtained channel selective for each evaporation residue populated by the de-excitation cascade. A comparison of the spin distribution at different beam energies indicates that its slope becomes steeper and steeper with increasing beam energy. This change in slope of the spin distribution is mainly due to the onset of fission competition with particle evaporation at higher beam energies.

PhysicsFissionPhysicsQC1-999fusion reactions ; spin distributionsEvaporation7. Clean energyDistribution (mathematics)CascadeParticlePhysics::Accelerator PhysicsCondensed Matter::Strongly Correlated ElectronsAtomic physicsBeam energyBeam (structure)Spin-½EPJ Web of Conferences
researchProduct

Simulation of cluster impact fusion

1992

We report molecular dynamics simulations of the impact of TiD clusters on TiD targets. In each cluster collision the total fusion probability seems to be due to a single deuterium deuterium collision. The kinetic energies of incident deuterium atoms gradually level off around the initial cluster energy, but do not reach the high energy tail of a corresponding Maxwell-Boltzmann distribution. Neither any other support for a thermonuclear fusion mechanism was observed. On the contrary, our simulations imply that the enhanced fusion rate is rather due to channeled many atom collision cascade type mechanism.

PhysicsFusionThermonuclear fusionDeuteriumPhysics::Plasma PhysicsAtomCluster (physics)Collision cascadeAtomic physicsCluster impact fusionNuclear ExperimentKinetic energyAtomic and Molecular Physics and OpticsZeitschrift f�r Physik D Atoms, Molecules and Clusters
researchProduct