Search results for "SOLAR"

showing 10 items of 2301 documents

High energy neutrinos from novae in symbiotic binaries: The case of V407 Cygni

2010

Detection of high-energy (>= 100 MeV) gamma rays by the Fermi Large Area Telescope from a nova in the symbiotic binary system V407 Cygni has opened the possibility of high-energy neutrino detection from this type of source. A thermonuclear explosion on the white dwarf surface sets off a nova shell in motion that expands and slows down in a dense surrounding medium provided by the red giant companion. Particles are accelerated in the shocks of the shell and interact with the surrounding medium to produce observed gamma rays. We show that proton-proton interaction, which is most likely responsible for producing gamma rays via neutral pion decay, produces >= 0:1 GeV neutrinos that can be detec…

PhysicsAstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsRed giantAstrophysics::High Energy Astrophysical PhenomenaWhite dwarfFOS: Physical sciencesCosmic rayAstrophysicsType (model theory)High Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)PionHigh Energy Physics - Phenomenology (hep-ph)Neutrino detectorAstrophysics::Solar and Stellar AstrophysicsNeutrinoAstrophysics - High Energy Astrophysical PhenomenaNuclear ExperimentAstrophysics::Galaxy AstrophysicsFermi Gamma-ray Space Telescope
researchProduct

The HADES RV Programme with HARPS-N@TNG. III. Flux-flux and activity-rotation relationships of early-M dwarfs

2016

(Abridged) Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres as well as for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. We aim to test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships also hold for early-M dwarfs on the main-sequence. We analyse in an homogeneous and coherent way a well defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-n red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cr…

Red dwarfAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsStellar atmosphereBalmer seriesAstronomy and AstrophysicsEffective temperatureExoplanetRadial velocityStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencesymbolsAstrophysics::Earth and Planetary Astrophysics
researchProduct

Iron and pH regulating the photochemical mineralization of dissolved organic carbon

2017

Solar radiation mineralizes dissolved organic matter (DOM) to dissolved inorganic carbon through photochemical reactions (DIC photoproduction) that are influenced by iron (Fe) and pH. This study addressed as to what extent Fe contributes to the optical properties of the chromophoric DOM (CDOM) and DIC photoproduction at different pH values. We created the associations of Fe and DOM (Fe-DOM) that cover the range of loadings of Fe on DOM and pH values found in freshwaters. The introduced Fe enhanced the light absorption by CDOM independent of pH. Simulated solar irradiation decreased the light absorption by CDOM (i.e., caused photobleaching). Fe raised the rate of photobleaching and steepened…

ta222mineralisation010504 meteorology & atmospheric sciencesphGeneral Chemical Engineeringsolar radiationhiiliInorganic chemistryta1172education116 Chemical sciencesrauta010501 environmental sciencesPhotochemistry01 natural sciencesMineralization (biology)Articlelaw.inventionlcsh:ChemistryironMagazinelawDissolved organic carbonIrradiationauringonsäteilyta1161172 Environmental sciences0105 earth and related environmental sciencesChemistrypHcarbonGeneral ChemistryPhotobleaching6. Clean watermineralisaatioColored dissolved organic matterlcsh:QD1-999
researchProduct

On the importance of background subtraction in the analysis of coronal loops observed with TRACE

2010

In the framework of TRACE coronal observations, we compare the analysis and diagnostics of a loop after subtracting the background with two different and independent methods. The dataset includes sequences of images in the 171 A, 195 A filter bands of TRACE. One background subtraction method consists in taking as background values those obtained from interpolation between concentric strips around the analyzed loop. The other method is a pixel-to-pixel subtraction of the final image when the loop had completely faded out, already used by Reale & Ciaravella 2006. We compare the emission distributions along the loop obtained with the two methods and find that they are considerably differen…

PhysicsBackground subtractionTrace (linear algebra)Subtractionastrofisica Fisica solare Sun: corona Sun: X-rays gamma rays method: data analysisFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsSTRIPSCoronal loopFilter (signal processing)law.inventionComputational physicsLoop (topology)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencelawSolar and Stellar Astrophysics (astro-ph.SR)Interpolation
researchProduct

Light Curves of Radio Supernovae

2007

We present the results from the on-going radio monitoring of recent type II supernovae (SNe), including SNe 2004et, 2004dj, 2002hh, 2001em, and 2001gd. Using the Very Large Array to monitor these supernovae, we present their radio light-curves. From these data we are able to discuss parameterizations and modeling and make predictions of the nature of the progenitors based on previous research. Derived mass loss rates assume wind-established circumstellar medium, shock velocity ~10,000 km/s, wind velocity ~10 km/s, and CSM Temperature ~10,000 K.

Very large arrayPhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)AstronomyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysicsLight curveWind speedShock (mechanics)SupernovaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct

Perovskite solar cells employing organic charge-transport layers

2013

Thin-film photovoltaics play an important role in the quest for clean renewable energy. Recently, methylammonium lead halide perovskites were identified as promising absorbers for solar cells(1). In the three years since, the performance of perovskite-based solar cells has improved rapidly to reach efficiencies as high as 15%(1-10). To date, all high-efficiency perovskite solar cells reported make use of a (mesoscopic) metal oxide, such as Al2O3, TiO2, or ZrO2, which requires a high-temperature sintering process. Here, we show that methylammonium lead iodide perovskite layers, when sandwiched between two thin organic charge-transporting layers, also lead to solar cells with high power-conve…

chemistry.chemical_classificationMaterials scienceChemical engineeringchemistryIodidetechnology industry and agricultureSublimation (phase transition)Hybrid solar cellQuantum dot solar cell7. Clean energyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsNature Photonics
researchProduct

The B0.5IVe CoRoT target HD 49330. I. Photometric analysis from CoRoT data

2009

International audience; Context: Be stars undergo outbursts producing a circumstellar disk from the ejected material. The beating of non-radial pulsations has been put forward as a possible mechanism of ejection. Aims: We analyze the pulsational behavior of the early B0.5IVe star HD 49330 observed during the first CoRoT long run towards the Galactical anticenter (LRA1). This Be star is located close to the lower edge of the beta Cephei instability strip in the HR diagram and showed a 0.03 mag outburst during the CoRoT observations. It is thus an ideal case for testing the aforementioned hypothesis. Methods: We analyze the CoRoT light curve of HD 49330 using Fourier methods and non-linear le…

PhysicsBe starHertzsprung–Russell diagramAstrophysics::High Energy Astrophysical PhenomenaAstronomyAstronomy and AstrophysicsContext (language use)AstrophysicsLight curveStarssymbols.namesakeAmplitudeSpace and Planetary Science[SDU]Sciences of the Universe [physics]symbolsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEmission spectrumInstability strip[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics::Galaxy Astrophysics
researchProduct

Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test

2018

Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…

010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)Plasma parametersT-NDASContext (language use)Astrophysics01 natural sciencessymbols.namesakeMethods: data analysis0103 physical sciencesRadiative transferCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]numerical [Methods]Methods: numericalAstronomy and AstrophysicsPlasmaSun: UV radiationPolarization (waves)coronal mass ejections (CMEs) [Sun]Computational physicsQC PhysicsPlasmasSpace and Planetary SciencePhysics::Space PhysicssymbolsMagnetohydrodynamicsDoppler effectAstronomy & Astrophysics
researchProduct

Pulsar Velocities without Neutrino Mass

1998

We show that pulsar velocities may arise from anisotropic neutrino emission induced by resonant conversions of massless neutrinos in the presence of a strong magnetic field. The main ingredient is a small violation of weak universality and neither neutrino masses nor magnetic moments are required.

PhysicsNuclear and High Energy PhysicsParticle physicsMagnetic momentPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)General Physics and AstronomyFísicaFOS: Physical sciencesElementary particleSolar neutrino problemAstrophysicsAtomic and Molecular Physics and OpticsMagnetic fieldMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)PulsarMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationLepton
researchProduct

Evolutionary paths of binaries with a neutron star - I. The case of SAX J1808.4 - 3658

2018

The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of $\sim$6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital pe…

Angular momentumastro-ph.SRAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesLuminosityPulsars: individual: SAX J1808.4Settore FIS/05 - Astronomia E AstrofisicaPulsarBinaries: closeMass transfer0103 physical sciencesBinaries: generalStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)3658 -X-rays: binarieHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HE010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct