Search results for "SOLITONS"
showing 10 items of 401 documents
Phase Domains and Spatial Solitons in Degenerate Optical Parametric Oscillators with Injection
2000
The stability of phase domains and spatial solitons in DOPO under the presence of an injected signal is investigated. The injected signal prevents the nondegenerate regime and, for a particular value of the phase, preserves the equivalence between the two homogeneous states, allowing the domain formation and, in particular, the stability of solitons. The main conclusion is that injection facilitates the experimental observation of solitons in degenerate OPOs.
Pattern formation in a complex Swift-Hohenberg equation with phase bistability
2016
We study pattern formation in a complex Swift Hohenberg equation with phase-sensitive (parametric) gain. Such an equation serves as a universal order parameter equation describing the onset of spontaneous oscillations in extended systems submitted to a kind of forcing dubbed rocking when the instability is towards long wavelengths. Applications include two-level lasers and photorefractive oscillators. Under rocking, the original continuous phase symmetry of the system is replaced by a discrete one, so that phase bistability emerges. This leads to the spontaneous formation of phase-locked spatial structures like phase domains and dark-ring (phase-) cavity solitons. Stability of the homogeneo…
Switching dynamics of dark-pulse Kerr comb states in optical microresonators
2019
Dissipative Kerr solitons are localized structures that exist in optical microresonators. They lead to the formation of microcombs --- chip-scale frequency combs that could facilitate precision frequency synthesis and metrology by capitalizing on advances in silicon photonics. Previous demonstrations have mainly focused on anomalous dispersion microresonators. Notwithstanding, localized structures also exist in the normal dispersion regime in the form of circulating dark pulses, but their physical dynamics is far from being understood. Here, we report the discovery of reversible switching between coherent dark-pulse Kerr combs, whereby distinct states can be accessed deterministically. Furt…
An E-plane EBG waveguide for dispersion compensated transmission of short pulses
2007
The resolution of radar applications can significantly suffer from pulse broadening along the propagation in homogeneous hollow waveguides. The latter occurs due to the strongly dispersive nature of the fast waves in the waveguides. A low-cost solution to this problem is here proposed, employing an EBG type of waveguide, compatible with traditional E-plane fabrication techniques. By means of an example, here we demonstrate the reduction of the pulse spreading as it propagates along this type of waveguide.
Pulse quality analysis on soliton pulse compression and soliton self-frequency shift in a hollow-core photonic bandgap fiber.
2013
A numerical investigation of low-order soliton evolution in a proposed seven-cell hollow-core photonic bandgap fiber is reported. In the numerical simulation, we analyze the pulse quality evolution in soliton pulse compression and soliton self-frequency shift in three fiber structures with different cross-section sizes. In the simulation, we consider unchirped soliton pulses (of 400 fs) at the wavelength of 1060 nm. Our numerical results show that the seven-cell hollow-core photonic crystal fiber, with a cross-section size reduction of 2%, promotes the pulse quality on the soliton pulse compression and soliton self-frequency shift. For an input soliton pulse of order 3 (which corresponds to…
Spatial Simultons in 2D Photonic Crystals of Nonlinear Origin
2007
We observed for the very first time quadratic spatial solitons (simultons) in a two dimensional photonic lattice defined by periodic sign inversion of its susceptibilty. This is the first demonstration of quadratic self-confinement in a 2D purely nonlinear photonic crystal.
Development of ultra-fast thulium-doped fiber lasers - Prospects for 2μm-nanophotonics.
2021
Developing highly coherent pulsed sources around the 2 µm wavelengthhas been a particularly dynamic field of research in the last couples of years,due to its numerous applications. In optical telecommunication, the wavelength rangearound 2 µm is one of the most promising solutions to increase the transmission capacitypast the current technological bottleneck. In this context, passively mode-lockedfiber lasers appear as a high potential solution for cheap laser sources, due to their veryhigh coherence and intrinsic compatibility with telecommunication systems.Passively mode-locked fiber lasers at 1,55 µm and their ultrafast dynamics is oneof the specialty of the ICB laboratory, and the aim i…
Modulational instability and domain wall solitons in optical fibers
2000
The first part of this thesis presents some theoretical and experimental results about modulational instability and domain wall solitons in bimodal fibers.In the second part is devoted to the interaction of counter-propagating waves in an isotropic optical fiber
Horseshoe-shaped maps in chaotic dynamics of long Josephson junction driven by biharmonic signals
2000
Abstract A collective coordinate approach is applied to study chaotic responses induced by an applied biharmonic driven signal on the long Josephson junction influenced by a constant dc-driven field with breather initial conditions. We derive a nonlinear equation for the collective variable of the breather and a new version of the Melnikov method is then used to demonstrate the existence of Smale horseshoe-shaped maps in its dynamics. Additionally, numerical simulations show that the theoretical predictions are well reproduced. The subharmonic Melnikov theory is applied to study the resonant breathers. Results obtained using this approach are in good agreement with numerical simulations of …
Dissipative solitons for mode-locked lasers
2012
International audience; Dissipative solitons are localized formations of an electromagnetic field that are balanced through an energy exchange with the environment in presence of nonlinearity, dispersion and/or diffraction. Their growing use in the area of passively mode-locked lasers is remarkable: the concept of a dissipative soliton provides an excellent framework for understanding complex pulse dynamics and stimulates innovative cavity designs. Reciprocally, the field of mode-locked lasers serves as an ideal playground for testing the concept of dissipative solitons and revealing their unusual dynamics. This Review provides basic definitions of dissipative solitons, summarizes their imp…