Search results for "SPORT"

showing 10 items of 11179 documents

Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins

1998

Some phytopathogenic fungi within Phytophthora species are unable to synthesize sterols and therefore must pick them up from the membranes of their host-plant, using an unknown mechanism. These pseudo-fungi secrete elicitins which are small hydrophilic cystein-rich proteins. The results show that elicitins studied interact with dehydroergosterol in the same way, but with some time-dependent differences. Elicitins have one binding site with a similar strong affinity for dehydroergosterol. Using a non-steroid hydrophobic fluorescent probe, we showed that phytosterols are able to similarly bind to elicitins. Moreover, elicitins catalyze sterol transfer between phospholipidic artificial membran…

0106 biological sciencesPhytophthora[SDV]Life Sciences [q-bio]Biophysics01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesNaphthalenesulfonatesErgosterolPlant defense against herbivoryExtracellularSecretionBinding sitePERSPECTIVEMolecular BiologyPhospholipidsComputingMilieux_MISCELLANEOUS030304 developmental biologyFluorescent Dyes0303 health sciencesBinding SitesbiologyfungiAlgal ProteinsPhytosterolsElicitinBiological TransportCell BiologyPlantsbiology.organism_classificationSterolCell biology[SDV] Life Sciences [q-bio]KineticsMembraneSpectrometry FluorescenceBiochemistryPhytophthoraCarrier Proteins010606 plant biology & botanyProtein Binding
researchProduct

Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in M edicago trun…

2013

International audience; Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cros…

0106 biological sciencesRhizophagus irregularisNitrogenPhysiologyPlant SciencePlant Roots01 natural sciencesPhosphatesPhosphorus metabolismTranscriptome03 medical and health scienceschemistry.chemical_compoundNutrientSymbiosisGene Expression Regulation PlantStress PhysiologicalMycorrhizaeMedicago truncatulaBotanyPlant defense against herbivory[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPhosphate Transport ProteinsGlomeromycotaSymbiosisPlant Proteins030304 developmental biology2. Zero hunger0303 health sciencesbiologyTerpenesfungifood and beveragesPhosphorusPhosphatebiology.organism_classificationMedicago truncatulaErythritolchemistrySugar PhosphatesTranscriptomeSignal Transduction010606 plant biology & botanyNew Phytologist
researchProduct

Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula

2004

To construct macro- and microarray tools suitable for expression profiling in root endosymbioses of the model legume Medicago truncatula, we PCR-amplified a total of 6048 cDNA probes representing genes expressed in uninfected roots, mycorrhizal roots and young root nodules [Nucleic Acids Res. 30 (2002) 5579]. Including additional probes for either tissue-specific or constitutively expressed control genes, 5651 successfully amplified gene-specific probes were used to grid macro- and to spot microarrays designated Mt6k-RIT (M. truncatula 6k root interaction transcriptome). Subsequent to a technical validation of microarray printing, we performed two pilot expression profiling experiments usin…

0106 biological sciencesRoot nodule[SDV]Life Sciences [q-bio]Plant Roots01 natural sciencesApplied Microbiology and BiotechnologyTranscriptomeADNCGene Expression Regulation PlantGene Expression Regulation FungalMycorrhizaeMedicagoPCR-basedComputingMilieux_MISCELLANEOUSOligonucleotide Array Sequence AnalysisPlant ProteinsExpressed Sequence Tags2. Zero hunger0303 health sciencesnodulin genesroot nodule symbiosisarbuscular mycorrhizafood and beveragesEquipment DesignGeneral MedicineMedicago truncatulaArbuscular mycorrhiza[SDV] Life Sciences [q-bio]expression profilingDNA microarrayBiotechnologyBioengineeringComputational biologyBiologySensitivity and Specificity03 medical and health sciencesComplementary DNABotanySymbiosisLeghemoglobin030304 developmental biologyGene Expression ProfilingfungiReproducibility of Resultsbiology.organism_classificationEquipment Failure AnalysisGene expression profilingphosphate transportercDNA array010606 plant biology & botany
researchProduct

Cercospora beticola toxins. IX. Relationship between structure of beticolins, inhibition of plasma membrane H+ -ATPase and partition in lipid membran…

1996

Beticolins are yellow toxins produced by the fungus Cercospora beticola. The effect of one of them, beticolin-1, has been investigated on corn root plasma membrane H + -ATPase (EC 3.6.1.35) at different purification levels (plasma membrane fraction. partially, or highly purified enzyme). The results obtained demonstrated that (1) the purified proton pump was inhibited directly by low amounts of the toxin (I 50 =1.62 ± 0.18 μM), (2) the biological effects of beticolin-1 were similar to those of CBT (Cercospora beticola toxin). Furthermore, it was established that the efficiency of the different beticolins was clearly related to their ability to interact with the lipid bilayers, determined by…

0106 biological sciencesSTRUCTUREPhysiologyATPasePlant Science010402 general chemistrymedicine.disease_cause01 natural sciencesProton transportGeneticsmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyLipid bilayerComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationLiposomeChromatographybiologyChemistryToxinCell BiologyGeneral MedicineCercospora beticolabiology.organism_classification0104 chemical sciencesMembraneEnzymeBiochemistrybiology.protein010606 plant biology & botany
researchProduct

Photoreceptors and respiratory electron flow involvement in the activity of acifluorfen-methyl and LS 82-556 on nonchlorophyllous soybean cells

1987

Abstract The diphenyl ether acifluorfen-methyl [AFM; methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoate] and the pyridine derivative LS 82-556 [( S )-3- N -(methylbenzyl)carbamoyl-5-propionyl-2,6-lutidine] induce light-dependent polyunsaturated fatty acid peroxidation, leading to general membrane disruption. Although devoid of functional chloroplasts, cultured soybean cells are sensitive to AFM and LS 82-556 only in the light. The possible involvement of carotenoids and respiratory electron flow was examined by monitoring ethane evolution, fluorescein release, and dry weight/fresh weight ratio alteration. Herbicide effects on cells exposed to white light or blue light (380–540 n…

0106 biological sciencesStereochemistryHealth Toxicology and Mutagenesis[SDV]Life Sciences [q-bio]Antimycin ATRANSPORT D'ELECTRONS01 natural sciences03 medical and health scienceschemistry.chemical_compoundmedicineFluoresceinCarotenoidComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesTrifluoromethylDiphenyl etherGeneral MedicineChloroplast[SDV] Life Sciences [q-bio]MembraneMechanism of actionchemistryBiophysicsmedicine.symptomAgronomy and Crop Science010606 plant biology & botany
researchProduct

Sugar transporters in plants and in their interactions with fungi.

2012

International audience; Sucrose and monosaccharide transporters mediate long distance transport of sugar from source to sink organs and constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Even if numerous families of plant sugar transporters are defined; efflux capacities, subcellular localization and association to membrane rafts have only been recently reported. On the fungal side, the investigation of sugar transport mechanisms in mutualistic and pathogenic interactions is now emerging. Here, we review the essential role of sugar transporters for distribution of carbohydrates inside plant cells, as well as for plant fungal interactio…

0106 biological sciencesSucroseSucroseMonosaccharide Transport Proteins[SDV]Life Sciences [q-bio]plantPlant ScienceBiologyCarbohydrate metabolism01 natural sciences03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsSymbiosisMycorrhizaemonosaccharideMonosaccharidetransporters mediateSugarSymbiosis030304 developmental biologyPlant Diseaseschemistry.chemical_classification0303 health sciencesfungiMonosaccharidesfood and beveragesTransporterPlantsSubcellular localizationPlant LeaveschemistryBiochemistry[SDE]Environmental SciencesCarbohydrate MetabolismEffluxtransport of sugar010606 plant biology & botanyTrends in plant science
researchProduct

Can sucrose content in the phloem sap reaching field pea seeds (Pisum sativum L.) be an accurate indicator of seed growth potential ?

2003

The composition of the translocates reaching the seeds of pea plants having various nitrogen (N) nutrition regimes was investigated under field situations. Sucrose flow in the phloem sap increased with the node number, but was not significantly different between N nutrition levels. Because N deficiency reduced the number of flowering nodes and the number of seeds per pod, the sucrose flow bleeding from cut peduncles was divided by the number of seeds to give the amount of assimilates available per seed. The sucrose concentration in phloem sap supplied to seeds at the upper nodes was higher than that at the lower nodes. The flow of sucrose delivered to the seeds during the cell division peri…

0106 biological sciencesSucroseTime FactorsSucrosePhysiologyPlant ScienceBiology01 natural sciencesPisum[SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/Botanics03 medical and health scienceschemistry.chemical_compoundField peaSativumNitrogen FixationBotanySaviaSymbiosisComputingMilieux_MISCELLANEOUSPlant Proteins030304 developmental biology2. Zero hunger0303 health sciencesPeasTemperatureMembrane Transport Proteinsfood and beveragesFabaceaeFabaceae[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanicsbiology.organism_classificationHorticulturePoint of deliverychemistrySeedsPhloemBiomarkers010606 plant biology & botany
researchProduct

The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrh…

2012

We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden- tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members…

0106 biological sciencesSucrose[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesSIEVE ELEMENTSchemistry.chemical_compoundGene Expression Regulation Plantsucrose transporterMycorrhizaePHLOEMROOTSPlant Proteins2. Zero hungerRegulation of gene expression0303 health sciencesPHOSPHATE TRANSPORTERbiologyfood and beveragesARABIDOPSISSUTMedicago truncatulasugar partitioning[SDE]Environmental Sciencessugar transportGlomus intraradicesEXPRESSIONTOMATO SUGAR TRANSPORTERMolecular Sequence DataGENE FAMILYPhosphates03 medical and health sciencesSymbiosisBotanyMedicago truncatula[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSSugarGlomeromycotaSymbiosisGeneMolecular Biology030304 developmental biologyfungiMembrane Transport Proteins15. Life on landbiology.organism_classificationMONOSACCHARIDE TRANSPORTERYeastCarbonchemistryHeterologous expression010606 plant biology & botanyMolecular plant
researchProduct

Importance of meteorological variables for aeroplankton dispersal in an urban environment

2016

Passive wind dispersal is one of the major mechanisms through which organisms disperse and colonize new areas. The detailed comprehension of which factors affect this process may help to preserve its efficiency for years to come. This is especially important in the current context of climate change, which may seriously alter weather regimes that drive dispersal, and is crucial in urban contexts, where biodiversity is dramatically threatened by pollution and fragmentation of natural patches. Despite its interest, the analysis of factors affecting aeroplankton dispersal in urban environments is rare in literature. We sampled aeroplankton community uninterruptedly every 4 hours from 17th May t…

0106 biological sciencesSuction trapAeroplanktonbiologyEcologyJohnson-Taylor suction trap aeroplankton arthropods passive transport meteorological variablesSampling (statistics)ORDER HYMENOPTERAbiology.organism_classification010603 evolutionary biology01 natural sciences010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataBiological dispersalAnimal Science and ZoologyAgaonidaeUrban environment
researchProduct

The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells

2002

Summary A cDNA encoding a protein, NtrbohD, located on the plasma membrane and homologue to the flavocytochrome of the neutrophil NADPH oxidase, was cloned in tobacco. The corresponding mRNA was accumulated when tobacco leaves and cells were treated with the fungal elicitor cryptogein. After elicitation with cryptogein, tobacco cells transformed with antisense constructs of NtrbohD showed the same extracellular alkalinization as the control, but no longer produced active oxygen species (AOS). This work represents the first demonstration of the function of a homologue of gp91–phox in AOS production in elicited tobacco cells.

0106 biological sciencesTime FactorsNicotiana tabacumMolecular Sequence DataPlant ScienceBiologyGenes Plant01 natural sciencesFungal Proteins[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsComplementary DNATobaccoGene expressionGeneticsExtracellularAOSAmino Acid SequenceRNA MessengerCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesOxidase testNADPH oxidaseGene Expression ProfilingAlgal ProteinsCell MembraneHydrogen PeroxideCell BiologyHydrogen-Ion ConcentrationPlants Genetically Modifiedbiology.organism_classification3. Good healthElicitorCell biologyPlant LeavesProtein TransportBiochemistryCell culturebiology.proteinOxidoreductasesReactive Oxygen Species010606 plant biology & botany
researchProduct