Search results for "STARS"

showing 10 items of 798 documents

Pressure Shift and Gravitational Red Shift of Balmer Lines in White Dwarfs. Rediscussion

2015

The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of $H_\alpha$ and $H_\beta$ Balmer lines in spectra of DA white dwarfs (WDs), as masking effects in measurements of the gravitational red shift in WDs, have been examined in detail. The results are compared with our earlier ones from before a quarter of a century (Grabowski et al. 1987, hereafter ApJ'87; Madej and Grabowski 1990). In these earlier papers, as a dominant constituent of the Balmer-line-profiles, the standard, symmetrical Stark line profiles, shifted as the whole by PS-effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark-line-profiles (e…

Physicsatomic processes; line: formation; line: profiles; plasmas; white dwarfsmedia_common.quotation_subjectFOS: Physical sciencesBalmer seriesWhite dwarfAstronomy and AstrophysicsAstrophysicsPlasmaAsymmetrySpectral linesymbols.namesakeStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencesymbolsSolar and Stellar Astrophysics (astro-ph.SR)Line (formation)media_commonGravitational redshift
researchProduct

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

2017

Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. We investigate the correlation between the optical emission and the X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 years. We have used optical spectra from the SAAO, SMARTS and SALT telescopes and optical photometry from INTEGRAL/OMC and ASAS. We also used X-ray observations from INTEGRAL/…

BrightnessBe starAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectX-ray binarystars: emission-lineFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineDensity wave theoryPhotometry (optics)X-rays: binariesstars: neutrontechniques: photometric0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsBeAstronomy and AstrophysicsLight curvestars: emission-line BeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSkyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenatechniques: spectroscopicAstronomy & Astrophysics
researchProduct

The Gaia-ESO Survey: The origin and evolution of s-process elements

2018

Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the ave…

astro-ph.GAMetallicityFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: diskAstronomi astrofysik och kosmologiAbundance (ecology)QB4600103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar AstrophysicsDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsgeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesStarsAbundances [Galaxy][SDU]Sciences of the Universe [physics]13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsDisk [Galaxy]s-processOpen cluster
researchProduct

Reproductive strategy as a piece of the biogeographic puzzle: a case study using Antarctic sea stars (Echinodermata, Asteroidea)

2017

13 pages; International audience; AimTo describe and analyse asteroid biogeographic patterns in the Southern Ocean (SO) and test whether reproductive strategy (brooder versus broadcaster) can explain distribution patterns at the scale of the entire class. We hypothesize that brooding and broadcasting species display different biogeographic patterns.LocationSouthern Ocean, south of 45 °S.MethodsOver 14,000 asteroid occurrences are analysed using bootstrapped spanning network (BSN), non-metrical multidimensional scaling (nMDS) and clustering to uncover the spatial structure of faunal similarities among 25 bioregions.ResultsMain biogeographic patterns are congruent with previous works based on…

0106 biological sciencesBiogeographyinvertebrate[SDV.BID]Life Sciences [q-bio]/BiodiversityBiologysea stars010603 evolutionary biology01 natural sciencesreproductive modeAsteroidea [Starfish]PaleontologyBenthosBenthos14. Life underwaterMultidimensional scalingSouthern OceanEndemismEcology Evolution Behavior and SystematicsInvertebrate[ SDV.BID ] Life Sciences [q-bio]/Biodiversity[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEchinodermata [Echinoderms]EcologyEcology010604 marine biology & hydrobiologybenthosAffinitiesbiogeographic barrierTaxonregionalizationAntarcticaSpecies richness[SDE.BE]Environmental Sciences/Biodiversity and EcologyEchinodermata
researchProduct

Towards modelling the central engine of short GRBs

2011

Numerical relativity simulations of non-vacuum spacetimes have reached a status where a complete description of the inspiral, merger and post-merger stages of the late evolution of close binary neutron systems is possible. Determining the properties of the black-hole-torus system produced in such an event is a key aspect to understand the central engine of short-hard gamma-ray bursts (sGRBs). Of the many properties characterizing the torus, the total rest-mass is the most important one, since it is the torus' binding energy which can be tapped to extract the large amount of energy necessary to power the sGRB emission. In addition, the rest-mass density and angular momentum distribution in t…

PhysicsHistoryAngular momentumAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyTorusAstrophysicsComputer Science ApplicationsEducationBlack holeStarsNeutron starNumerical relativityTheory of relativitymagnetohydrodynamics binary neutron stars gravitational waves
researchProduct

PLANETS AROUND LOW-MASS STARS AND STELLAR ACTIVITY EFFECTS

In the last years the field of exoplanet research has focused its interest in M dwarfs. These stars have became the favourite targets in radial velocity surveys, specially when looking for small planets in the habitable zones of their parent stars. Not only for being the M dwarfs the most common objects in our Galaxy also because the Doppler signals due to small planets orbiting around them are larger and more easily detectable than those around FGK stars. However, stellar magnetic activity and rotation affect the measured radial velocities as surface inhomogeneities rotating with the stellar surface can cause periodic changes in the spectral line centroid. Disentangle these stellar activit…

activity - Stars: low-mass - Techniques: radial velocities - planetary systems [Stars]Stars: activity - Stars: low-mass - Techniques: radial velocities - planetary systems
researchProduct

XMM-Newton observation of the classical T Tauri star SU Aurigae and the surrounding field

2007

Aims. We investigate the properties of the X-ray emitting plasma of the classical T Tauri star SU Aurigae and of other sources in the field of view. Methods. We use XMM-Newton to obtain a high-resolution RGS spectrum of SU Aur as well as EPIC imaging data and lowresolution spectra of the star and of other X-ray sources in the surrounding field. We reconstruct the emission measure distribution of SU Aur from the RGS spectrum using a line-based method, and we perform multi-temperature fits of the MOS spectra of the strongest sources both for the full observation and for selected time intervals to study their spectral variability. Results. The emission from SU Aur is highly variable, showing t…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsPlasmaAccretion (astrophysics)Astronomical spectroscopySpectral lineStarsT Tauri starStar clusterSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsOpen clusterAstronomy & Astrophysics
researchProduct

Are pulsars born with a hidden magnetic field?

2015

The observation of several neutron stars in the center of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the proto-neutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris onto the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper …

Astrophysics::High Energy Astrophysical Phenomenageneral [Pulsars]FOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomía y AstrofísicaPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)AstronomyAstronomy and Astrophysicsneutron [Stars]Magnetic fieldmagnetic field [Stars]Work (electrical)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

XMM-Newton observations of the young open cluster Blanco 1. II. X-ray time variability and flares.

2005

We study the X-ray variability of the young open cluster Blanco 1 observed with the EPIC camera on board the XMM-Newton X-ray observatory. The time coverage of EPIC observations has allowed us to address short time scale (hours) variability, while the comparison with previous ROSAT observations has allowed us to investigate the variability on time scale of six years. On the time scale of hours, dM stars of the cluster are more variable than solar-mass stars. The main features of X-ray light curves in dM stars appear to be essentially flare-like events with a typical duration of the order of a few ks, while dF-dG stars show smooth variations. Two intense flares were observed in the ZS76 clus…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstronomyAstronomy and AstrophysicsAstrophysicsCoronal loopLight curvelaw.inventionStarsStar clusterSpace and Planetary SciencelawROSATAstrophysics::Solar and Stellar AstrophysicsGalaxy clusterOpen clusterFlare
researchProduct