Search results for "STEM CELLS"

showing 10 items of 1108 documents

Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes

2018

[EN] Background/Aims: Chronic inflammation contributes to cartilage degeneration during the progression of osteoarthritis (OA). Adipose tissue-derived mesenchymal stem cells (ADMSC) show great potential to treat inflammatory and degradative processes in OA and have demonstrated paracrine effects in chondrocytes. In the present work, we have isolated and characterized the extracellular vesicles from human AD-MSC to investigate their role in the chondroprotective actions of these cells. Methods: AD-MSC were isolated by collagenase treatment from adipose tissue from healthy individuals subjected to abdominal lipectomy surgery. Microvesicles and exosomes were obtained from conditioned medium by…

0301 basic medicineMalePhysiologyCell SurvivalAdipose tissue-derived mesenchymal stem cellsAdipose tissueInflammationNitric OxideExtracellular vesiclesChondrocytelcsh:PhysiologyDinoprostonelcsh:Biochemistry03 medical and health sciencesChondrocytesOsteoarthritismedicineHumanslcsh:QD415-436Cells CulturedAgedInflammationlcsh:QP1-981ChemistryMesenchymal stem cellMesenchymal Stem CellsMiddle AgedExtracellular vesiclesChondrocyteMicrovesiclesMatrix MetalloproteinasesCell biology030104 developmental biologymedicine.anatomical_structureAdipose TissueCytokinesFemalemedicine.symptom
researchProduct

Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain.

2017

Our previous studies demonstrated that Austrolebias charrua annual fish is an excellent model to study adult brain cell proliferation and neurogenesis due to the presence of active and fast neurogenesis in several regions during its short lifespan. Our main goal was to identify and localize the cells that compose the neurogenic areas throughout the Austrolebias brain. To do this, we used two thymidine halogenated analogs to detect cell proliferation at different survival times: 5-chloro-2'-deoxyuridine (CldU) at 1day and 5-iodo-2'-deoxyuridine (IdU) at 30days. Three types of proliferating cells were identified: I - transient amplifying or fast cycling cells that uptake CldU; II - stem cells…

0301 basic medicineMalePopulationVimentinCell Count03 medical and health sciencesCyprinodontiformes0302 clinical medicineImaging Three-DimensionalCell MovementAnimalsStem Cell NicheeducationColoring AgentsMolecular BiologyCell Proliferationeducation.field_of_studybiologyCell growthGeneral NeuroscienceStem CellsNeurogenesisBrainAnatomyNestinbiology.organism_classificationImmunohistochemistryCell biologyMethylene Blue030104 developmental biologybiology.proteinNeurology (clinical)NeuNStem cell030217 neurology & neurosurgeryAustrolebiasDevelopmental BiologyBrain research
researchProduct

Microenvironment in neuroblastoma: isolation and characterization of tumor-derived mesenchymal stromal cells

2018

Background It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. …

0301 basic medicineMaleRegistrieCancer ResearchCellular differentiationMesenchymal stromal cellsCell SeparationNeuroblastoma0302 clinical medicineImmunophenotypingCancer-Associated FibroblastsTumor MicroenvironmentCytotoxic T cellRegistriesStemnessCancer-Associated FibroblastCoculture TechniqueChildrenCells CulturedStemneChemistryMesenchymal stromal cellCell CycleEMTCell Differentiationlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensImmunohistochemistryMesenchymal Stem CellOncology030220 oncology & carcinogenesisChild PreschoolPopulation SurveillanceBone Marrow CellFemaleResearch ArticleHumanSignal TransductionStromal cellMicroenvironmentBone Marrow Cellslcsh:RC254-282Immunophenotyping03 medical and health sciencesGeneticsBiomarkers TumorHumansSettore MED/04 - Patologia GeneraleTumor microenvironmentGene Expression ProfilingMesenchymal stem cellInfantMesenchymal Stem CellsCoculture Techniques030104 developmental biologyTumor progressionCancer cellMutationCancer research
researchProduct

Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells.

2018

Synaptic protein -synuclein (-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinsons disease. Here, we report that -SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also showthat premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking-SYN resemblesthe effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic -SYN. Interestingly…

0301 basic medicineMaleanimal diseases[SDV]Life Sciences [q-bio]DopamineNeurogenesisRegulatorniche biologyBiologyNeurotransmissionenvironment and public health03 medical and health scienceschemistry.chemical_compoundstemnessMice0302 clinical medicineNeural Stem CellsDopaminemedicineSubependymal zoneAnimalsHumansheterocyclic compoundsNeurons AfferentStem Cell NicheResearch ArticlesparkinsonismCellular SenescenceGeneral NeuroscienceMPTPDopaminergic NeuronsNeurogenesisDopaminergicBrainNeural stem cellMice Mutant Strains3. Good healthnervous system diseases[SDV] Life Sciences [q-bio]adult neurogenesis030104 developmental biologychemistrynervous systemalpha-SynucleinFemaleNeuroscience030217 neurology & neurosurgerySnca knock-outmedicine.drug
researchProduct

Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibrobla…

2018

Abstract Background Fibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-β (TGF-β) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process. Methods After ethical approval was obtained, skin biopsies were co…

0301 basic medicineMalelcsh:Diseases of the musculoskeletal systemProton Pump InhibitorFibrosiCellular differentiationmedicine.medical_treatmentSystemic sclerosiFibrosisImmunology and AllergyMedicineMyofibroblastsskin and connective tissue diseasesCells CulturedSkinintegumentary systemCell DifferentiationMiddle AgedMesenchymal Stem CellBenzamidesSystemic sclerosisFemaleMyofibroblastResearch ArticleHumanAdultStromal cellImmunology03 medical and health sciencesYoung AdultRheumatologyBenzamideAntigens CDAntigens NeoplasmHumansGene silencingCell ProliferationMyofibroblastScleroderma Systemicbusiness.industryGrowth factorMesenchymal stem cellStromal CellMesenchymal Stem CellsProton Pump Inhibitorsmedicine.diseaseFibrosisCD248Settore MED/16 - Reumatologia030104 developmental biologyCancer researchStromal Cellslcsh:RC925-935CD248; Fibrosis; Systemic sclerosis; Rheumatology; Immunology and Allergy; ImmunologybusinessTransforming growth factor
researchProduct

When Three Isn't a Crowd: A Digyny Concept for Treatment-Resistant, Near-Triploid Human Cancers.

2019

Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populati…

0301 basic medicineMalelcsh:QH426-470DNA repairKaryotypeSpindle ApparatusDigynyBiologyGenomeGermline03 medical and health sciencesnear-triploid cancer0302 clinical medicineMeiosisNeoplasmsGeneticsTumor Cells Culturedtumor blastomeresHumansGeneGenetics (clinical)GeneticsChromosomes Human XChromosomes Human YModels Geneticfungifood and beverageschemoresistancereprogrammingKaryotypeConcept Papertripolar mitosisTriploidyradioresistancelcsh:GeneticsMeiosis030104 developmental biologyGerm Cellspedogamy030220 oncology & carcinogenesisNeoplastic Stem Cellspolynuclear cancer cellsPloidyHeLa CellsdigynyGenes
researchProduct

Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo.

2017

Abstract Here we describe the fabrication process of amorphous strontium-polyphosphate microparticles (“Sr-a-polyP-MP”). The effects of these particles on growth and gene expression were investigated with SaOS-2 cells as well as with human mesenchymal stem cells (MSC) and compared with those particles prepared of amorphous calcium-polyphosphate (“Ca-a-polyP-MP”) and of strontium salt. The results revealed a markedly higher stimulation of growth of MSC by “Sr-a-polyP-MP” compared to “Ca-a-polyP-MP” and a significant increase in mineralization of SaOS-2 cells, as well as an enhanced upregulation of the expression of the genes encoding for alkaline phosphatase and the bone morphogenetic protei…

0301 basic medicineMaterials scienceBiomedical Engineering02 engineering and technologyBone healingBiochemistryBone morphogenetic protein 2OsteocytesBiomaterials03 medical and health scienceschemistry.chemical_compoundCalcification PhysiologicIn vivoPolyphosphatesCell Line TumorBone cellAnimalsHumansMolecular BiologyWnt Signaling PathwayBone mineralMesenchymal Stem CellsGeneral Medicine021001 nanoscience & nanotechnologyAntigens Differentiationdigestive system diseasesMicrospheresCell biologyRatsPLGA030104 developmental biologychemistryGene Expression RegulationStrontiumSclerostinAlkaline phosphatase0210 nano-technologyBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

Effect of Low-Intensity Pulsed Ultrasound on Osteogenic Human Mesenchymal Stem Cells Commitment in a New Bone Scaffold

2017

Purpose Bone tissue engineering is helpful in finding alternatives to overcome surgery limitations. Bone growth and repair are under the control of biochemical and mechanical signals; therefore, in recent years several approaches to improve bone regeneration have been evaluated. Osteo-inductive biomaterials, stem cells, specific growth factors and biophysical stimuli are among those. The aim of the present study was to evaluate if low-intensity pulsed ultrasound stimulation (LIPUS) treatment would improve the colonization of an MgHA/Coll hybrid composite scaffold by human mesenchymal stem cells (hMSCs) and their osteogenic differentiation. LIPUS stimulation was applied to hMSCs cultured on …

0301 basic medicineMaterials scienceCellular differentiation0206 medical engineeringLow intensity pulsed ultrasoundBiomedical EngineeringBiophysicsBioengineeringHuman mesenchymal stem cell02 engineering and technologyLow-intensity pulsed ultrasoundHuman mesenchymal stem cellsBiomaterials03 medical and health sciencesTissue ScaffoldTissue engineeringTissue scaffoldsOsteogenesisOsteogenic differentiationHumansOriginal Research ArticleCells CulturedBone growthTissue EngineeringTissue ScaffoldsOsteogenesiMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsBone scaffoldGeneral MedicineMgHA/Coll hybrid composite scaffold020601 biomedical engineeringMesenchymal Stem Cell030104 developmental biologyUltrasonic WavesLow intensity pulsed ultrasoundsHumanBiomedical engineeringJournal of Applied Biomaterials & Functional Materials
researchProduct

A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate.

2017

Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate (“a-polyP/RA-MP”). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The “a-polyP/RA-MP” ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC). This increase was paralleled by an upregulation of the MSC marker genes for osteoblast differ…

0301 basic medicineMaterials sciencebusiness.product_categoryPolymers and Plasticsenamel cracks/fissuresamorphous polyphosphate microparticles; retinyl acetate; enamel cracks/fissures; Streptococcus mutans; human mesenchymal stem cells; collagen type I; alkaline phosphatasecollagen type IRetinyl acetateArticleStreptococcus mutans03 medical and health scienceschemistry.chemical_compoundhuman mesenchymal stem cells0302 clinical medicinestomatognathic systemDentinmedicineToothpasteretinyl acetateEnamel paintbiologyamorphous polyphosphate microparticles030206 dentistryGeneral ChemistryPeriodontiumTooth enamelbiology.organism_classificationMolecular biologyStreptococcus mutansstomatognathic diseases030104 developmental biologymedicine.anatomical_structureDentinal Tubulechemistryvisual_artvisual_art.visual_art_mediumbusinessalkaline phosphatasebiomaterialsPolymers
researchProduct

Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia.

2020

A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs …

0301 basic medicineMesenchymal stem cells coronavirus2019-20 coronavirus outbreakfunction recoveryStromal cellCoronavirus disease 2019 (COVID-19)mesenchymal stem cells COVID-19Clinical BiochemistryAdipose tissuemedicine.disease_causeimmunomodulationOrginal Articlestem cell therapy COVID-19cellular therapy COVID-1903 medical and health sciences0302 clinical medicineDrug Discoverymedicinecell transplantationMesenchymal stem cells coronavirusCoronavirusPharmacologymesenchymal stem cellsbusiness.industrymesenchymal stem cells COVID-19Settore MED/19COVID-19medicine.diseaseVirologyACE2 negativeadipose-derived stem cells coronavirusadipose-derived stem cells coronavirusPneumoniaEditorialstem cell therapy COVID-19030104 developmental biology030220 oncology & carcinogenesiscellular therapy COVID-19Functional activityStem cellbusinessExpert opinion on biological therapy
researchProduct