Search results for "STEMI"

showing 10 items of 2898 documents

Influence of processing parameters and initial temper on Friction Stir Extrusion of 2050 aluminum alloy

2017

Abstract Friction Stir Extrusion is an innovative production technology that enables direct wire production via consolidation and extrusion of metal chips or solid billets. During the process, a rotating die is plunged into a cylindrical chamber containing the material to be extruded. The stirring action of the tool produces plastic flow in the extrusion chamber, densifying and heating the charge so that finally, fully dense rods are extruded. Experiments have been carried out in order to investigate the influence of process parameters and initial temper of the base material on the process variables and on the extrudates’ mechanical properties.

0209 industrial biotechnologyMaterials scienceConsolidation (soil)Strategy and ManagementMetallurgyAlloychemistry.chemical_elementFriction Stir Extrusion FSE Recycling Aluminum alloys 205002 engineering and technologyManagement Science and Operations ResearchPlasticityengineering.material021001 nanoscience & nanotechnologyIndustrial and Manufacturing EngineeringRod020901 industrial engineering & automationchemistryAluminiumengineeringExtrusionComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJournal of Manufacturing Processes
researchProduct

Single block 3D numerical model for linear friction welding of titanium alloy

2018

A two-stage approach for the simulation of Linear Friction Welding is presented. The proposed model, developed using the commercial simulation package DEFORM, is 3D Lagrangian, thermo-mechanically coupled. The first phase of the process was modelled with two distinct workpieces, while the remaining phases were simulated using a single-block model. The Piwnik–Plata criterion was set up and used to determine the shifting from the dual object to the single-block model. The model, validated against experimental temperature measurements, is able to predict the main field variables distributions with varying process parameters. Titanium alpha and beta phases evolution during the whole process has…

0209 industrial biotechnologyMaterials scienceFinite element method titanium linear friction welding Ti6Al4VTitanium alloychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsFinite element methodsymbols.namesake020901 industrial engineering & automationchemistryBlock (telecommunications)symbolsGeneral Materials ScienceFriction weldingComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneLagrangianTitanium
researchProduct

In-process control strategies for friction stir welding of AZ31 sheets with non-uniform thickness

2017

Two different in-process control strategies were developed and compared with the aim to produce AZ31 magnesium alloy joints by friction stir welding on sheet blanks with a non-uniform thickness. To this purpose, sheets with dip or hump zones were welded by either changing the rotational speed or the tool plunging in order to keep constant the value of the vertical force occurring during the welding stage of the process. The influence of the main process parameters on the tool force, the micro- and macromechanical properties, and the joints microstructures in the dip and hump zones were analyzed. The results showed that using the rotational speed change-based approach, the hump zones are sub…

0209 industrial biotechnologyMaterials scienceFriction stir welding02 engineering and technologyWeldingRotationIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationlawTailor welded blankFriction stir weldingComposite materialMagnesium alloyJoint (geology)Settore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMechanical EngineeringMetallurgyRotational speedComputer Science Applications1707 Computer Vision and Pattern Recognition021001 nanoscience & nanotechnologyMicrostructureGrain sizeComputer Science ApplicationsControl and Systems Engineering0210 nano-technologyMagnesium alloySoftware
researchProduct

Improving surface integrity of additively manufactured GP1 stainless steel by roller burnishing

2020

Abstract Additive manufacturing can rapidly fabricate the desired components by selectively melting and solidifying feedstock, rather than conventional subtractive machining. However, the difference between the two routes in terms of surface integrity of the final component is relevant. This paper presents a strategy to control the surface characteristics of additively manufactured stainless steel by roller burnishing. In particular, process parameters have been carefully selected to improve the surface integrity of the worked material. The quality of the surface has been analyzed in terms of roughness, hardness, microstructure and residual stresses. The overall product endurance under high…

0209 industrial biotechnologyMaterials scienceMechanical EngineeringMetallurgyFatigue testing02 engineering and technologySurface finishRoller burnishingRaw materialMicrostructureSurface integrity Additive manufacturing Roller burnishingIndustrial and Manufacturing Engineering020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringMachiningResidual stressSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneSurface integrityCIRP Annals
researchProduct

Magnetic field-assisted single-point incremental forming with a magnet ball tool

2021

Abstract This paper describes magnetic field-assisted single-point incremental forming (M-SPIF) with a Nd-Fe-B magnet ball tool. In M-SPIF, the tool driven by magnetic force plastically deforms a sheet. The polarity of the magnet tool helps to make the magnetic force (i.e., forming force) more controllable. In creating a truncated cone, the direction of the magnetic force gradually points more outward as the process progresses, and material is forced outwards from the cone center, increasing thinning in M-SPIF, while the cone center remains undeformed in traditional SPIF. Moreover, M-SPIF creates less localized plastic strain than traditional SPIF while forming the desired geometry.

0209 industrial biotechnologyMaterials scienceMechanical EngineeringProcess (computing)Mechanical engineering02 engineering and technologyPlasticityIndustrial and Manufacturing EngineeringMagnetic field020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringCone (topology)Incremental sheet forming Magnetic field Sheet metalMagnetBall (bearing)Single pointSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePolarity (mutual inductance)
researchProduct

Friction Stir Welding of Ti6Al4V complex geometries for aeronautical applications: a feasibility study

2020

Abstract While Friction Stir Welding (FSW) of aluminium alloys can be considered a mature technology, even for complex joint morphologies, as T joints welded “in transparency”, welding of hard material still presents several open issues. In fact, welding of titanium alloys is a challenging process due to the chemical, mechanical and thermal characteristics of such materials which are subjected to atmosphere contamination resulting in joint hydrogen, oxygen and nitrogen embrittlement; additionally, due to the high melting temperature, large distortion and residual stress are found in joints obtained by traditional fusion welding processes as gas metal arc welding, electron beam welding and l…

0209 industrial biotechnologyMaterials scienceMetallurgyFriction Stir WeldingLaser beam weldingTitanium alloy02 engineering and technologyWeldingIndustrial and Manufacturing EngineeringGas metal arc weldinglaw.inventionFusion welding020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringArtificial IntelligenceResidual stresslawT-joints.Electron beam weldingFriction stir weldingTitanium alloySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneProcedia Manufacturing
researchProduct

AZ31 magnesium alloy recycling through friction stir extrusion process

2015

Friction Stir Extrusion is a novel technique for direct recycling of metal scrap. In the process, a dedicated tool produces both the heat and the pressure to compact and extrude the original raw material, i.e., machining chip, as a consolidated component. A proper fixture was used to carry out an experimental campaign on Friction Stir Extrusion of AZ31 magnesium alloy. Variable tool rotation and extrusion ratio were considered. Appearance of defects and fractures was related to either too high or too low power input. The extruded rods were investigated both from the metallurgical and mechanical points of view. Tensile strength up to 80 % of the parent material was found for the best combina…

0209 industrial biotechnologyMaterials scienceMetallurgyScrap02 engineering and technologyFixture021001 nanoscience & nanotechnologyRodMaterial flowFriction stir extrusion020901 industrial engineering & automationMachiningUltimate tensile strengthRecyclingGeneral Materials ScienceExtrusionMaterials Science (all)Magnesium alloyComposite material0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneMagnesium alloyMaterial flowInternational Journal of Material Forming
researchProduct

Linear friction welding of dissimilar AA6082 and AA2011 aluminum alloys: microstructural characterization and design guidelines

2015

This paper presents the results of an experimental and numerical campaign on Linear Friction Welding of dissimilar AA2011-T8 and AA6082-T6 aluminum alloys. Experimental tests were carried out with constant oscillation amplitude and process time. Varying oscillation frequency, interface pressure, specimen geometry and mutual position were used. Grain size measurements, HV tests and EDX analysis were considered to characterize the microstructure of the joints as a function of the input process parameters. A thermal numerical model was utilized to predict the temperature profiles in the joints during the process. The obtained results allowed the identification of four weld categories: sound jo…

0209 industrial biotechnologyMaterials scienceOscillationMetallurgychemistry.chemical_element02 engineering and technologyWelding021001 nanoscience & nanotechnologyMicrostructureGrain sizeCharacterization (materials science)law.invention020901 industrial engineering & automationchemistryAluminiumlawGeneral Materials ScienceFriction weldingComposite material0210 nano-technologyLinear Friction Welding Dissimilar welds Aluminum alloys Grain sizeSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJoint (geology)International Journal of Material Forming
researchProduct

Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization

2019

Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…

0209 industrial biotechnologyMaterials sciencePrimary energyAluminium alloyStrategy and ManagementAlloySustainable manufacturingchemistry.chemical_element02 engineering and technologyManagement Science and Operations Researchengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePressingWire drawingElectric potential energyMetallurgy021001 nanoscience & nanotechnologySECFriction stir extrusionchemistryengineeringExtrusion0210 nano-technologySolid State recyclingEfficient energy use
researchProduct

Uncovering Technological and Environmental Potentials of Aluminum Alloy Scraps Recycling Through Friction Stir Consolidation

2020

Conventional metal chips recycling processes are energy-intensive with low efficiency and permanent material losses during re-melting. Solid state recycling allows direct recycling of metal scraps into semi-finished products. It is expected that this process category would lower the environmental performance of metals recycling. Friction Stir Consolidation is a new solid-state technique taking advantage of friction heat generation and severe plastic deformation to consolidate chips into billets. In this research, the feasibility of Friction Stir Consolidation as aluminum chips recycling process is analyzed. Specifically, an experimental campaign has been carried out with varying main proces…

0209 industrial biotechnologyMaterials sciencePrimary energySolid bondingAlloySolid-stateSustainable manufacturingchemistry.chemical_elementFriction stir consolidation02 engineering and technologyengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumManagement of Technology and InnovationGeneral Materials ScienceRecyclingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneConsolidation (soil)Renewable Energy Sustainability and the EnvironmentMechanical EngineeringMetallurgy021001 nanoscience & nanotechnologychemistryHeat generationengineeringSevere plastic deformation0210 nano-technologyEfficient energy useAluminum
researchProduct