Search results for "STIRRED VESSELS"

showing 8 items of 18 documents

POWER CONSUMPTION IN UNBAFFLED TANKS: SUB AND SUPER-CRITICAL REGIMES

2013

Unbaffled stirred tanks are increasingly recognized as a viable alternative to common baffled tanks for a range of processes (e.g. crystallization, food and pharmaceutical processes, etc) where the presence of baffles is undesirable for some reason. Also, in the case of bioreactors for animal cell cultivation, where cell damage is mainly related to bubbles bursts at the air –liquid interface, unbaffled tanks have been shown to be able to provide sufficient mass transfer through the free surface vortex. As a consequence bubble formation and subsequent bursting is conveniently avoided (Scargiali et al., 2012). The same feature clearly makes unbaffled vessels potentially advantageous for any f…

Settore ING-IND/25 - Impianti Chimicimixing unbaffled stirred vessels power number
researchProduct

CFD simulation of radially stirred baffled and unbaffled tanks

2019

Stirred tanks typically employed in process industries are provided with baffles. Although the presence of baffles is known to guarantee good mixing rates, unbaffled vessels may be compulsory in some applications as crystallization, bioremediation, biotechnology and ore industry. A better understanding of unbaffled stirred vessels flow dynamics may allow (i) a proper design to be performed and (i) conditions/processes where baffle presence can be avoided to be recognized. In the present study, the k-ω SST was used to simulate an unbaffled tank from early to fully turbulent regime (Re≈600-33,000). The unbaffled tank simulated has a diameter T=0.19m and is stirred by a standard six-bladed Rus…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciCFD unbaffled tanks creeping flow stirred vesselsSettore ING-IND/25 - Impianti Chimici
researchProduct

Power Consumption in Uncovered Unbaffled Stirred Tanks: Influence of the Viscosity and Flow Regime

2013

Notwithstanding the increasing industrial interest toward unbaffled tanks, available experimental information on their behavior is still scant, even for basic quantities such as the mechanical power drawn. In this work, the influence of the Reynolds and Froude numbers on the power consumption characteristics is presented for unbaffled stirred tanks operating both in nonaerated conditions (subcritical regime) and in aerated conditions (supercritical regime), i.e., when the free surface vortex has reached the impeller and the gas phase is ingested and dispersed inside the reactor. Experimental results obtained at various liquid viscosities show that power numbers obtained in subcritical condi…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceUnbaffled tankSettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringFlow (psychology)ThermodynamicsPower numberIndustrial and Manufacturing EngineeringPhysics::Fluid DynamicsImpellersymbols.namesakeViscosityBioreactorsFroude numberUNBAFFLED STIRRED VESSELSPower NumberMIXINGGeneral ChemistryMechanicsSupercritical fluidVortexFree surfacesymbolsPower demandMultiphase Reactor
researchProduct

CFD Simulation of Particle Suspension Height in Stirred Vessels

2004

Computational fluid dynamics (CFD) simulation capabilities for stirred solid–liquid dense systems are explored. These systems may give rise to the formation of a thick and well defined clear liquid layer in the upper part of the vessel, whose extension progressively reduces with increasing impeller speed. Experimental measurements of the suspension height (the height of the particle laden layer) were carried out at various agitation speeds for a variety of solid–liquid systems in a fully baffled transparent tank. A clear layer of liquid was actually observed in all runs, with the suspension height almost linearly dependent on agitation speed. CFD simulations of the above described systems w…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials sciencebusiness.industrySettore ING-IND/25 - Impianti ChimiciGeneral Chemical EngineeringEulerian pathGeneral ChemistryMechanicsDense two-phase mixtureComputational fluid dynamicsParticle dipersionAgitatorEuler equationssymbols.namesakeImpellerParticle suspensionSolids suspensionControl theoryCFD simulationsymbolsParticleStirred vesselsbusinessSuspension (vehicle)Layer (electronics)Chemical Engineering Research and Design
researchProduct

Oxygen Transfer Performances of Unbaffled Bio_Reactors with Various Aspect Ratios

2014

Cultivation of microorganisms, plants or animal cells requires liquid agitation in order to ensure oxygen and nutrient transfer and to maintain cell suspension. Many studies on animal cell damage due to mechanical agitation and sparging aeration have shown that mechanical damage of freely suspended animal cells is in most cases associated with bursting bubbles at the air–liquid interface (Barrett et al., 2010). Gas bubbles are usually generated by direct air sparging aimed at supplying oxygen to the culture medium. Mechanical agitation may also introduce gas bubbles in the culture medium via vortexing entrainment from the free surface. In this work oxygen transfer performance of an unbaffle…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicilcsh:Computer engineering. Computer hardwareSettore ING-IND/25 - Impianti Chimicilcsh:TP155-156stirred tanks unbaffled gas-liquidlcsh:TK7885-7895UNBAFFLED STIRRED VESSELSlcsh:Chemical engineeringMultiphase bioreactorFree-surface vorticeOxygen mass transferChemical Engineering Transactions
researchProduct

Assessment of particle suspension conditions in stirred vessels by means of pressure gauge technique

2002

In this work the quantitative assessment of the mass of suspended solid particles in stirred vessels is performed using the Pressure Gauge Technique. This is based on the measurements of the pressure increase on the tank bottom due to the presence of suspended solid particles at any agitation speed. The method has the advantages of not utilising visual observations and of easy and inexpensive application to both laboratory and industrial equipment. Very few data are available in literature and the experimental results collected using the present PGT technique and the correlations here proposed are of considerable academic and industrial interest.

Suspended solidsWork (thermodynamics)Industrial equipmentChemistryGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciMechanical engineeringMineralogyGeneral ChemistryParticle suspensionlaw.inventionPressure gauge techniquePressure measurementlawPressure increaseQuantitative assessmentStirred vesselsParticles suspension
researchProduct

Solid–Liquid Suspensions in Top-Covered Unbaffled Vessels: Influence of Particle Size, Liquid Viscosity, Impeller Size, and Clearance

2014

Particle suspension in liquids is a unit operation commonly encountered in the process industry. Although it is usually carried out in baffled stirred tanks, there are some specific applications where the presence of baffles may be undesirable. In the present work solid-liquid suspensions are investigated in a radially stirred unbaffled tank provided with a top cover. The minimum impeller speed at which all solid particles get suspended (Njs) and the relevant power requirements (Pjs) are assessed. The dependence of these two parameters on physical properties (liquid viscosity, particle concentration, and size) and system geometrical configurations (impeller diameter and clearance) is invest…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceChromatographyGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciLiquid viscosityBaffleGeneral ChemistryMechanicsUnit operationSOLID-LIQUID SUSPENSIONIndustrial and Manufacturing EngineeringImpellerSOLID-LIQUID MIXINGParticlesolid liquid suspension stirred tank Njs unbaffled vessel complete suspension power requirementsParticle sizeUNBAFFLED STIRRED VESSELSSolid liquid
researchProduct

Vortex shape in unbaffled stirred vessels: experimental study via digital image analysis

2011

There is a growing interest in using unbaffled stirred tanks for addressing certain processing needs. In this work, digital image analysis coupled with a suitable shadowgraphy-based technique is used to investigate the shape of the free-surface vortex that forms in uncovered unbaffled stirred tanks. The technique is based on back-lighting the vessel and suitably averaging vortex shape over time. Impeller clearance from vessel bottom and tank filling level are varied to investigate their influence on vortex shape. A correlation is finally proposed to fully describe vortex shape also when the vortex encompasses the impeller.

lcsh:Computer engineering. Computer hardwareSettore ING-IND/25 - Impianti Chimicidigital image analysilcsh:TP155-156bioreactorslcsh:TK7885-7895surface vortexComputingMethodologies_DOCUMENTANDTEXTPROCESSINGunbuffled stirred vesselUNBAFFLED STIRRED VESSELSlcsh:Chemical engineeringunbuffled stirred vessels; surface vortex; bioreactorsFree-surface vorticeComputingMilieux_MISCELLANEOUSComputingMethodologies_COMPUTERGRAPHICS
researchProduct