Search results for "STUB1"

showing 1 items of 1 documents

BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72

2016

The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts.…

0301 basic medicineTime FactorsUbiquitin-Protein LigasesImmunoblottingHSP72 Heat-Shock ProteinsUbiquitin-conjugating enzymeProtein degradationArticleCatalysisCell Linelcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinddc:570Humansaging; BAG2; CHIP; HSP72; proteostasis; ubiquitinationPhysical and Theoretical ChemistryHSP72lcsh:QH301-705.5Molecular BiologyCellular SenescenceSpectroscopySTUB1proteostasisBAG2biologyCHIPagingOrganic ChemistryUbiquitinationGeneral MedicineComputer Science ApplicationsUbiquitin ligaseCell biology030104 developmental biologyProteostasislcsh:Biology (General)lcsh:QD1-999Chaperone (protein)biology.proteinRNA InterferenceProtein foldingMolecular ChaperonesInternational Journal of Molecular Sciences
researchProduct