Search results for "SUM-RULES"

showing 7 items of 7 documents

Experimental Evidence for an Attractive p-φ Interaction

2021

Physical review letters 127(17), 172301 (2021). doi:10.1103/PhysRevLett.127.172301

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ProtonGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentALICEscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]correlation functionNuclear ExperimentPhysicsstrong interactionVDP::Kjerne- og elementærpartikkelfysikk: 431:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431nuclear matterPHOTOPRODUCTIONParticle Physics - Experimentcorrelation: two-particleQCD SUM-RULES; VECTOR-MESONS; COLLISIONS; PARTICLES; PHOTOPRODUCTIONCOLLISIONSParticle physicsp p: scatteringMesonStrong interactionCorrelation function (quantum field theory)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Physics and Astronomy(all)530114 Physical sciencessymmetry: chiralQCD SUM-RULES; VECTOR-MESONS; COLLISIONS; PARTICLES; PHOTOPRODUCTION;QCD SUM-RULES0103 physical sciencesPARTICLEScorrelation: two-particle ; symmetry: chiral ; p p: scattering ; scattering length ; Phi(1020) ; coupling constant ; correlation function ; strong interaction ; ALICE ; nuclear matter ; effective range ; experimental results ; 13000 GeV-cms/nucleonNuclear Physics - Experimentddc:530phi meson particle physics ALICE010306 general physicstwo-particle [correlation]Coupling constantchiral [symmetry]010308 nuclear & particles physicsScatteringPhi(1020)coupling constantScattering lengthNuclear matter13000 GeV-cms/nucleonscattering lengthStrong Interactioneffective rangeHigh Energy Physics::ExperimentVECTOR-MESONSexperimental results
researchProduct

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Odd parity bottom-flavored baryon resonances

2013

The LHCb Collaboration has recently observed two narrow baryon resonances with beauty. Their masses and decay modes look consistent with the quark model orbitally excited states Lambda(b)(5912) and Lambda(b)*(5920), with quantum numbers J(P) = 1/2(-) and 3/2(-), respectively. We predict the existence of these states within a unitarized meson-baryon coupled-channel dynamical model, which implements heavy-quark spin symmetry. Masses, quantum numbers and couplings of these resonances to the different meson-baryon channels are obtained. We find that the resonances Lambda(0)(b)(5912) and Lambda(0)(b)(5920) are heavy-quark spin symmetry partners, which naturally explains their approximate mass de…

Nuclear and High Energy PhysicsParticle physicsCharmNuclear TheoryN-asteriskHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciences01 natural sciencesCHARMNuclear Theory (nucl-th)SUM-RULESHigh Energy Physics - Phenomenology (hep-ph)Heavy-quark symmetryMESON-EXCHANGE0103 physical sciencesChiral dynamicsNuclear Experiment010306 general physicsNuclear theorySpectroscopyKaon-nucleon interactionsPhysicsMeson-exchangeStatesSPECTROSCOPYCoupled-channelN-ASTERISK010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCHIRAL DYNAMICSFísicaCOUPLED-CHANNELHEAVY-QUARK SYMMETRYHigh Energy Physics - PhenomenologySTATESSum-rulesKAON-NUCLEON INTERACTIONSHigh Energy Physics::ExperimentSpin symmetryHumanities
researchProduct

Can we understand an auxetic pion-photon transition form factor within QCD?

2013

A state-of-the-art analysis of the pion-photon transition form factor is presented based on an improved theoretical calculation that includes the effect of a finite virtuality of the quasireal photon in the method of light-cone sum rules. We carry out a detailed statistical analysis of the existing experimental data using this method and by employing pion distribution amplitudes with up to three Gegenbauer coefficients a(2), a(4), a(6). Allowing for an error range in the coefficient a(6) approximate to 0, the theoretical predictions for gamma*gamma -> pi(0) obtained with nonlocal QCD sum rules are found to be in good agreement with all data that support a scaling behavior of the transition …

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsQCD sum rulesParticle physicsPhotonForm factor (quantum field theory)Cone Sum-RulesAmplitudePionDistribution (mathematics)Quantum mechanicsQuantum ChromodynamicsHigh Energy Physics::ExperimentScalingPhysical Review D
researchProduct

Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman nu(1) band

2000

International audience; The shape of the nu(1) Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915-2918 cm(-1) spectral region for total pressures from 0.4 to 70 atm and mixtures of approximate to 5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the re…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]SUM-RULESNITROGEN[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]PERTURBER DEPENDENCIESDENSITYPRESSURE-SHIFT COEFFICIENTS(CH4)-C-12CO2 INFRARED-SPECTRANU(3) BANDTEMPERATUREPARAMETERS
researchProduct

Structure of pion photoproduction amplitudes

2018

We derive and apply the finite energy sum rules to pion photoproduction. We evaluate the low energy part of the sum rules using several state-of-the-art models. We show how the differences in the low energy side of the sum rules might originate from different quantum number assignments of baryon resonances. We interpret the observed features in the low energy side of the sum rules with the expectation from Regge theory. Finally, we present a model, in terms of a Regge-pole expansion, that matches the sum rules and the high-energy observables.

Particle physicsStructure (category theory)FOS: Physical sciences01 natural sciencesPOLARIZED PHOTONSCHARGED PIONSPionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesT DISPERSION-RELATIONSPhysics and Astronomy (miscellaneous); high energy; pion photoproduction010306 general physicsCOMPTON-SCATTERINGPhysicsREGGE-POLES010308 nuclear & particles physicsObservablePI0 PHOTOPRODUCTIONQuantum numberBaryonRegge theoryHigh Energy Physics - PhenomenologyAmplitudeBARYON RESONANCESPhysics and AstronomyPI-0 PHOTOPRODUCTIONMESON PHOTOPRODUCTIONENERGY SUM-RULESEnergy (signal processing)
researchProduct

Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons

2013

We present a coupled channel unitary approach to obtain states dynamically generated from the meson-baryon interaction with hidden charm, using constraints of heavy quark spin symmetry. As a basis of states, we use (D) over barB, (D) over bar *B states, with B baryon charmed states belonging to the 20 representations of SU(4) with J(P) = 1/2(+), 3/2(+). In addition we also include the eta N-c and J/psi N states. The inclusion of these coupled channels is demanded by heavy quark spin symmetry, since in the large m(Q) limit the D and D* states are degenerate and are obtained from each other by means of a spin rotation, under which QCD is invariant. The novelty in the work is that we use dynam…

QuarkPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsQCD sum rulesParticle physicsChiral perturbation theoryHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesQCD sum-rulesBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)IsospinChiral perturbation theoryBound stateHigh Energy Physics::ExperimentSpin-½
researchProduct