Search results for "SUPERNOVA"
showing 10 items of 330 documents
Interplay between collective effects and non-standard interactions of supernova neutrinos
2009
We consider the effect of nonstandard neutrino interactions (NSI, for short) on the propagation of neutrinos through the supernova (SN) envelope within a three-neutrino framework and taking into account the presence of a neutrino background. We find that for given NSI parameters, with strength generically denoted by epsilon(ij), neutrino evolution exhibits a significant time dependence. For vertical bar epsilon(tau tau)vertical bar greater than or similar to 10(-3) the neutrino survival probability may become sensitive to the V-23 octant and the sign of epsilon(tau tau). In particular, if epsilon(tau tau) greater than or similar to 10(-2) an internal I-resonance may arise independently of t…
Light Curves of Radio Supernovae
2007
We present the results from the on-going radio monitoring of recent type II supernovae (SNe), including SNe 2004et, 2004dj, 2002hh, 2001em, and 2001gd. Using the Very Large Array to monitor these supernovae, we present their radio light-curves. From these data we are able to discuss parameterizations and modeling and make predictions of the nature of the progenitors based on previous research. Derived mass loss rates assume wind-established circumstellar medium, shock velocity ~10,000 km/s, wind velocity ~10 km/s, and CSM Temperature ~10,000 K.
XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence for shock-cloud interaction
2017
The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated wi…
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and Ic…
2019
[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…
New high energy γ-ray sources observed by COS B
1977
LOCALISED γ-ray sources contribute to the overall galactic emission; some of these sources have been identified with known astronomical objects1,2, while several unidentified γ-ray sources have also been reported3,4. We describe here a search for γ-ray sources using data from the ESA γ-ray satellite COS B which revealed 10 new unidentified sources. These sources seem to be galactic with typical γ-ray luminosities above 100 MeV in excess of 1035 erg s−1.
Detecting the Diffuse Supernova Neutrino Background in the future Water-based Liquid Scintillator Detector Theia
2021
A large-scale neutrino observatory based on water-based liquid scintillator (WbLS) will be excellently suited for a measurement of the diffuse supernova neutrino background (DSNB). The WbLS technique offers high signal efficiency and effective suppression of the otherwise overwhelming background from neutral-current interactions of atmospheric neutrinos. To illustrate this, we investigate the DSNB sensitivity for two configurations of the future Theia detector by developing the expected signal and background rejection efficiencies along a full analysis chain. Based on a statistical analysis of the remaining signal and background rates, we find that a rather moderate exposure of $190\text{ }…
The fully developed remnant of a neutrino-driven supernova: Evolution of ejecta structure and asymmetries in SNR Cassiopeia A
2020
Abridged. We aim at exploring to which extent the remnant keeps memory of the asymmetries that develop stochastically in the neutrino-heating layer due to hydrodynamic instabilities (e.g., convective overturn and the standing accretion shock instability) during the first second after core bounce. We coupled a 3D HD model of a neutrino-driven SN explosion with 3D MHD/HD simulations of the remnant formation. The simulations cover 2000 years of expansion and include all physical processes relevant to describe the complexities in the SN evolution and the subsequent interaction of the stellar debris with the wind of the progenitor star. The interaction of large-scale asymmetries left from the ea…
Core-collapse supernova simulations in one and two dimensions: comparison of codes and approximations
2018
We present spherically symmetric (1D) and axisymmetric (2D) supernova simulations for a convection-dominated 9 Msun and a 20 Msun progenitor that develops violent activity by the standing-accretion-shock instability (SASI). We compare in detail the Aenus-Alcar code, which uses fully multidimensional two-moment neutrino transport with an M1 closure, with a ray-by-ray-plus (RbR+) version of this code and with the Prometheus-Vertex code that employs RbR+ two-moment transport with a Boltzmann closure. Besides testing consequences of ignored non-radial neutrino-flux components in the RbR+ approximation, we also discuss the influence of various transport ingredients applied or not applied in rece…
Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations
2021
Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto-neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of early times (with a convective layer) and late times (when the star is…
GLITP optical monitoring of QSO 0957+561: VR light curves and variability
2003
The GLITP collaboration observed the first gravitational lens system (QSO 0957+561) from 2000 February 3 to 2000 March 31. The daily VR observations were made with the 2.56-m Nordic Optical Telescope at Roque de los Muchachos Observatory, La Palma (Spain). We have derived detailed and robust VR light curves of the two components Q0957+561A and Q0957+561B. In spite of the excellent sampling rate, we have not found evidence in favor of true daily variability. With respect to variability on time-scales of several weeks, we measure VR gradients of about -0.8 mmag/day in Q0957+561A and + 0.3 mmag/day in Q0957+561B. The gradients are very probably originated in the far source, thus adopting this …