Search results for "SURFACE MODIFICATION"

showing 10 items of 417 documents

Plasma Electrolytic Oxidation of TiZr Alloy in ZnONPs-Contained Solution: Structural and Biological Assessment

2020

Titanium (Ti) and its alloys with zirconium (Zr) due of their biological safety, lower elastic modulus and excellent corrosion resistance are the most attractive metallic materials for medical applications. Plasma electrolytic oxidation (PEO) is an environment-friendly process with rapid deposition of anodic oxide coating on the implant surface. PEO coating can incorporate different nanoparticles (NPs) into implant surface such as ZnO that stimulates osteoblast proliferation and mineralization, possesses antibacterial ability. The aim of current research was to evaluate structural and chemical properties of TiZr-alloy with addition ZnO NPs after the PEO in Ca/P solution. The alloy of the Ti…

Materials scienceBiocompatibilityAnodizingtechnology industry and agricultureOxideNanoparticlechemistry.chemical_elementPlasma electrolytic oxidationSilver nanoparticlechemistry.chemical_compoundchemistryChemical engineeringSurface modificationTitanium
researchProduct

Tailoring the stealth properties of biocompatible polysaccharide nanocontainers.

2014

Fundamental development of a biocompatible and degradable nanocarrier platform based on hydroxyethyl starch (HES) is reported. HES is a derivative of starch and possesses both high biocompatibility and improved stability against enzymatic degradation; it is used to prepare nanocapsules via the polyaddition reaction at the interface of water nanodroplets dispersed in an organic miniemulsion. The synthesized hollow nanocapsules can be loaded with hydrophilic guests in its aqueous core, tuned in size, chemically functionalized in various pathways, and show high shelf life stability. The surface of the HES nanocapsules is further functionalized with poly(ethylene glycol) via different chemistri…

Materials scienceBiocompatibilityBiophysicsBioengineeringNanotechnologyBiocompatible MaterialsNanocapsulesPolyethylene GlycolsBiomaterialsHydroxyethyl Starch Derivativeschemistry.chemical_compoundNanocapsulesCyclohexanesPolysaccharidesPolymer chemistryMaterials TestingLeukocytesAnimalsHumansTissue DistributionDrug CarriersMice Inbred BALB CAqueous solutionWaterFlow CytometryMiniemulsionchemistryMechanics of MaterialsCeramics and CompositesPEGylationSurface modificationFemaleAdsorptionNanocarriersEthylene glycolHalf-LifeBiomaterials
researchProduct

Toward potent antibiofilm degradable medical devices: A generic method for the antibacterial surface modification of polylactide

2013

International audience; The effects of biomaterials on their environment must be carefully modulated in most biomedical applications. Among other approaches, this modulation can be obtained through the modification of the biomaterial surface. This paper proposes a simple and versatile strategy to produce non-leaching antibacterial polylactide (PLA) surfaces without any degradation of the polyester chains. The method is based on a one-pot procedure that provides a "clickable" PLA surface via anionic activation which is then functionalized with an antibacterial quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPDMAEMA) by covalent immobilization on the surface. The anti-adherence and an…

Materials scienceBiocompatibilityCell SurvivalSurface PropertiesPolyestersBiomedical Engineering02 engineering and technologyBacterial Physiological PhenomenaPolylactide010402 general chemistryMethacrylate01 natural sciencesBiochemistryCell LineBiomaterialsMiceSurface modificationCoated Materials BiocompatibleAbsorbable ImplantsMaterials TestingPolymer chemistryAnimalsSurface modification Polylactide Antibacterial Biocompatibility BiofilmParticle SizeMolecular Biology[CHIM.ORGA]Chemical Sciences/Organic chemistryBiofilmtechnology industry and agricultureBiofilmBiomaterialGeneral Medicineequipment and supplies021001 nanoscience & nanotechnologyCombinatorial chemistryAnti-Bacterial Agents0104 chemical sciencesAntibacterialPolyesterNylonsCovalent bondBiofilmsMethacrylatesSurface modificationBiocompatibilityCrystallization0210 nano-technologyAntibacterial activityBiotechnologyActa Biomaterialia
researchProduct

Physical Fundamentals of Biomaterials Surface Electrical Functionalization

2020

This article is focusing on electrical functionalization of biomaterial&rsquo

Materials scienceBiocompatibilitySurface finishElectric chargelcsh:TechnologyArticleoxygen vacanciesSurface roughnesssurfacepoint defectsGeneral Materials ScienceWork functionSurface chargelcsh:Microscopylcsh:QC120-168.85roughnesslcsh:QH201-278.5business.industrylcsh:Thydroxyapatiteelectrical chargeSemiconductorChemical engineeringlcsh:TA1-2040Surface modificationfunctionalizationlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971biomaterialsMaterials
researchProduct

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

2015

In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in compa…

Materials scienceBiocompatibilitymedia_common.quotation_subjectJanus particlesGeneral Physics and AstronomyNanoparticleJanus particlesNanotechnologyquantum dotslcsh:Chemical technologylcsh:TechnologyFull Research PaperNanotechnologylcsh:TP1-1185General Materials ScienceViability assayElectrical and Electronic Engineeringlcsh:ScienceInternalizationNanoparticle Applicationcell viabilitymedia_commonlcsh:Tlcsh:QC1-999internalizationNanoscienceColloidal goldgold nanoparticlesSurface modificationlcsh:Qlcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Reconstitution of a protein monolayer on thiolates functionalized gaas surface

2012

International audience; In the aim to realize an efficient resonant biosensor, gallium arsenide (GaAs) presents many advantages. In addition to its properties of transduction, GaAs is a crystal for which microfabrication processes were developed, conferring the possibility to miniaturize the device and integrate electronic circuit. Moreover, the biofunctionalization could be realized on the crystalline surface without layer deposition, constituting a real advantage to perform reusable sensor. The functionalization of GaAs surface was engaged in order to immobilize a protein monolayer on this substrate. Functionalization was done using a mixed self assembled monolayer of thiolate molecules. …

Materials scienceBioengineeringNanotechnology02 engineering and technologySubstrate (electronics)010402 general chemistry01 natural sciences[SPI.AUTO]Engineering Sciences [physics]/AutomaticGallium arsenidechemistry.chemical_compound[ SPI.AUTO ] Engineering Sciences [physics]/AutomaticMonolayerGeneral Materials ScienceElectrical and Electronic EngineeringSelf-assembled monolayer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesComputer Science ApplicationschemistrySurface modification0210 nano-technologyBiosensorLayer (electronics)BiotechnologyMicrofabrication
researchProduct

Soluble IF-ReS2 nanoparticles by surface functionalization with terpyridine ligands.

2010

A major drawback in the application of layered chalcogenide nanoparticles/tubes is their inertness to chemical and biological modification and functionalization. Their potential use in composite materials might be greatly enhanced by improving the chalcogenide/matrix interface bonding. A novel modification strategy for layered chalcogenide nanoparticles based on the chalcophilic affinity of metals and the chelating terpyridine is reported. The terpyridine anchor group can be conjugated to fluorescent tags or hydrophilic/hydrophobic groups that confer solubility in various solvents to the otherwise insoluble chalcogenide nanoparticles. The functionalized particles are characterized using TEM…

Materials scienceChalcogenideInorganic chemistryNanoparticleInfrared spectroscopySurfaces and InterfacesConjugated systemCondensed Matter Physicschemistry.chemical_compoundchemistryChemical engineeringElectrochemistrySurface modificationGeneral Materials ScienceSolubilityTerpyridineHigh-resolution transmission electron microscopySpectroscopyLangmuir : the ACS journal of surfaces and colloids
researchProduct

Nanocapsules with specific targeting and release properties using miniemulsion polymerization.

2013

The field of application for nanosized materials ranges from mere technical purposes to a growing field of applications in biomedicine. Among the different techniques and processes to produce these materials for encapsulation of reporter molecules and drugs, the miniemulsion process has been proven to be highly adaptable to these specific needs.The review covers the recent developments in the field of miniemulsion as a very powerful technique for the formation of complex carriers for the encapsulation of different kinds of reporter molecule and drugs. The use of a wide variety of polymerization techniques in the miniemulsion process and possible utilization of a wide range of monomers as re…

Materials scienceChemistry PharmaceuticalPharmaceutical ScienceNanotechnologyMagnetic Resonance ImagingNanocapsulesNanostructuresMiniemulsionchemistry.chemical_compoundMonomerDrug Delivery SystemschemistryPolymerizationNanocapsulesPharmaceutical PreparationsDrug deliveryDrug releaseSurface modificationOrganic chemistryAnimalsHumansNanoparticlesEmulsionsMolecular Targeted TherapyHydrophobic and Hydrophilic InteractionsExpert opinion on drug delivery
researchProduct

Magnetic polyorganosiloxane core–shell nanoparticles: Synthesis, characterization and magnetic fractionation

2010

Abstact Here, we present the synthesis, characterization and magnetic separation of magnetic polyorganosiloxane nanoparticles. Magnetic iron oxide nanoparticles with average particle radii of 3.2 nm had been synthesized by a simple coprecipitation process of iron(II) and iron(III) salt in basic solution. Afterwards, the particles were successfully incorporated into a polyorganosiloxane network via a polycondensation reaction of trimethoxymethylsilane (T), diethoxydimethylsilane (D) and the functional monomer (chloromethylphenyl)trimethoxysilane (ClBz-T) in aqueous dispersion. A core–shell system was chosen to increase the flexibility of the system concerning size, composition and functional…

Materials scienceCoprecipitationMagnetic separationNanoparticleCondensed Matter PhysicsNanocapsulesElectronic Optical and Magnetic Materialslaw.inventionSQUIDchemistry.chemical_compoundchemistryChemical engineeringlawTransmission electron microscopySurface modificationIron oxide nanoparticlesJournal of Magnetism and Magnetic Materials
researchProduct

Photocatalytic degradation enhancement in pickering emulsions stabilized by solid particles of bare TiO 2

2019

Pickering emulsions provide a new way to enhance the efficiency of photocatalytic degradation of water-insoluble pollutants. Indeed, the semiconductor solid particles dually act as the photocatalyst and stabilizer of the emulsion droplets whose size dramatically affects the photocatalytic reaction. The present work aims at the validation of this concept by using bare TiO 2 without any surface modification. Nanostructured TiO 2 has been prepared by a simple sol-gel process and characterized by X-ray diffraction, specific surface area analysis, scanning electron microscopy, and diffuse reflectance spectroscopy. The emulsions were prepared by using 1-methylnaphthalene (1-MN) as a model organic…

Materials scienceDiffuse reflectance infrared fourier transformScanning electron microscopehealth care facilities manpower and serviceseducation02 engineering and technologyPickering emulsions010402 general chemistry01 natural scienceslaw.inventionOptical microscopelawSpecific surface areaElectrochemistryGeneral Materials ScienceSpectroscopyComputingMilieux_MISCELLANEOUShealth care economics and organizationsSurfaces and Interfaces[CHIM.MATE]Chemical Sciences/Material chemistry[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnologyCondensed Matter Physics[SDE.ES]Environmental Sciences/Environmental and SocietyPickering emulsion0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.POLY]Chemical Sciences/Polymers[SDV.SP.PG]Life Sciences [q-bio]/Pharmaceutical sciences/Galenic pharmacologyChemical engineering13. Climate actionPhotocatalysisSurface modification0210 nano-technologyStabilizer (chemistry)
researchProduct