Search results for "SW480"

showing 2 items of 2 documents

Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells.

2010

International audience; Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural antioxidant with cardiovascular and cancer preventive properties that is currently at the stage of pre-clinical studies for human cancer prevention. Beside its known effects on protein coding genes, one possible mechanism for resveratrol protective activities is by modulating the levels of non-coding RNAs. Here, we analyzed the effects of resveratrol on microRNA populations in human SW480 colon cancer cells. We establish that resveratrol treatment decreases the levels of several oncogenic microRNAs targeting genes encoding Dicer1, a cytoplasmic RNase III producing mature microRNAs from their immediate precurs…

Antineoplastic AgentsSmad ProteinsResveratrolBiochemistryAntioxidantsArticleTransforming Growth Factor beta1chemistry.chemical_compoundTGFβTransforming Growth Factor betaCell Line TumormicroRNAStilbenesPTENHumansRibonuclease III[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPharmacologyOncogene ProteinsbiologyEffectorTumor Suppressor ProteinsTransforming growth factor betaMolecular biologyColon cancer; microRNAs; miR-663; Resveratrol; SW480 cells; TGFβmiR-663Cell biologyColon cancerMicroRNAsSW480 cellschemistryResveratrolbiology.proteinSignal transductionTransforming growth factorSignal Transduction
researchProduct

Influence of the oncolytic parvovirus H-1, CTLA-4 antibody tremelimumab and cytostatic drugs on the human immune system in a human in vitro model of …

2013

Bernd Heinrich,* Katrin Goepfert,* Maike Delic, Peter R Galle, Markus MoehlerUniversity Medical Center of the Johannes Gutenberg University Mainz, 1st Department of Internal Medicine, Langenbeckstrasse, Mainz, Germany *These authors contributed equally to this workIntroduction: Tumor-directed and immune-system-stimulating therapies are of special interest in cancer treatment. Here, we demonstrate the potential of parvovirus H-1 (H-1PV) to efficiently kill colorectal cancer cells and induce immunogenicity of colorectal tumors by inducing maturation of dendritic cells (DCs) alone and also in combination with cytostatic drugs in vitro. Using our cell culture model, we have additionally investi…

Parvovirus H-1business.industrymedicine.medical_treatmentOncoTargets and TherapyOncolytic virusImmune systemCytokineOncologyAntigenCTLA-4ImmunologyCancer researchmedicineSW480Cytotoxic T cellPharmacology (medical)dendritic cellsbusinessTremelimumabmedicine.drugOriginal ResearchOncoTargets and Therapy
researchProduct