Search results for "SYLOW"

showing 10 items of 79 documents

On two classes of finite supersoluble groups

2017

ABSTRACTLet ℨ be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called ℨ-S-semipermutable if H permutes with every Sylow p-subgroup of G in ℨ for all p∉π(H); H is said to be ℨ-S-seminormal if it is normalized by every Sylow p-subgroup of G in ℨ for all p∉π(H). The main aim of this paper is to characterize the ℨ-MS-groups, or groups G in which the maximal subgroups of every Sylow subgroup in ℨ are ℨ-S-semipermutable in G and the ℨ-MSN-groups, or groups in which the maximal subgroups of every Sylow subgroup in ℨ are ℨ-S-seminormal in G.

010101 applied mathematicsCombinatoricsDiscrete mathematicsComplement (group theory)Finite groupAlgebra and Number TheoryLocally finite group010102 general mathematicsSylow theoremsOrder (group theory)0101 mathematics01 natural sciencesMathematicsCommunications in Algebra
researchProduct

Maximal subgroups and PST-groups

2013

A subgroup H of a group G is said r to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maxmial subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25)] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions o…

20e2820d05General MathematicsCombinatoricsLocally finite groupPermutabilityQA1-939Permutable prime20d10Algebra over a fieldMathematicsDiscrete mathematicsTransitive relation20f16Group (mathematics)20e15Sylow theoremsGrups Teoria deSylow-permutabilitySupersolubilityFinite groupsNumber theoryMaximal subgroupsÀlgebraMATEMATICA APLICADAMathematics
researchProduct

Correspondences of Brauer characters and Sylow subgroup normalizers

2021

Abstract Let p > 3 and q ≠ p be primes, let G be a finite q-solvable group and let P ∈ Syl p ( G ) . Then G has a unique irreducible q-Brauer character of p ′ -degree lying over 1 P if and only if N G ( P ) / P is a q-group. One direction of this result follows from a natural McKay bijection of p ′ -degree irreducible q-Brauer characters, which is obtained under suitable conditions.

Algebra and Number TheoryDegree (graph theory)Group (mathematics)010102 general mathematicsSylow theorems01 natural sciencesCombinatoricsCharacter (mathematics)0103 physical sciencesBijection010307 mathematical physics0101 mathematicsMathematics::Representation TheoryMathematicsJournal of Algebra
researchProduct

Erratum to “Orbit sizes, character degrees and Sylow subgroups” [Adv. Math. 184 (2004) 18–36]

2004

AlgebraMathematics(all)Pure mathematicsCharacter (mathematics)General MathematicsSylow theoremsOrbit (control theory)MathematicsAdvances in Mathematics
researchProduct

Nilpotent and abelian Hall subgroups in finite groups

2015

[EN] We give a characterization of the finite groups having nilpotent or abelian Hall pi-subgroups that can easily be verified using the character table.

AlgebraNilpotentPure mathematicsApplied MathematicsGeneral MathematicsSylow theoremsabelian Hall subgroupsAbelian groupSYLOWMATEMATICA APLICADAnilpotent all subgroupsfinite groupsMathematics
researchProduct

Characters and Blocks of Finite Groups

1998

This is a clear, accessible and up-to-date exposition of modular representation theory of finite groups from a character-theoretic viewpoint. After a short review of the necessary background material, the early chapters introduce Brauer characters and blocks and develop their basic properties. The next three chapters study and prove Brauer's first, second and third main theorems in turn. These results are then applied to prove a major application of finite groups, the Glauberman Z*-theorem. Later chapters examine Brauer characters in more detail. The relationship between blocks and normal subgroups is also explored and the modular characters and blocks in p-solvable groups are discussed. Fi…

AlgebraNormal subgroupPure mathematicsModular representation theoryBrauer's theorem on induced charactersSylow theoremsCharacter theoryOrder (group theory)Classification of finite simple groupsRepresentation theory of finite groupsMathematics
researchProduct

Orbit sizes, character degrees and Sylow subgroups

2004

AlgebraPure mathematicsMathematics(all)Character (mathematics)General MathematicsSylow theoremsOrbit (control theory)MathematicsAdvances in Mathematics
researchProduct

Permutability of injectors with a central socle in a finite solvable group

2017

In response to an Open Question of Doerk and Hawkes [5, IX Section 3, page 615], we shall show that if Zπ is the Fitting class formed by the finite solvable groups whose π-socle is central (where π is a set of prime numbers), then the Zπ-injectors of a finite solvable group G permute with the members of a Sylow basis in G. The proof depends on the properties of certain extraspecial groups [4].

Class (set theory)Algebra and Number Theory010102 general mathematicsSylow theoremsPrime numberBasis (universal algebra)01 natural sciencesFitting subgroupSet (abstract data type)CombinatoricsSection (category theory)Solvable group0103 physical sciences010307 mathematical physics0101 mathematicsMathematicsJournal of Algebra
researchProduct

On a class of supersoluble groups

2014

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.

Class (set theory)Finite groupGeneral MathematicsSylow theoremsGrups Teoria deAlgebraCombinatoricsBT-groupMS-groupÀlgebraAlgebra over a fieldFinite groupMATEMATICA APLICADASoluble PST-groupT0-groupMathematics
researchProduct

Homomorphs and wreath product extensions

1982

A homomorph is a class of (finite soluble) groups closed under the operation Q of taking epimorphic images. (All groups considered in this paper are finite and soluble.) Among those types of homomorphs that have found particular interest in the theory of finite soluble groups are formations and Schunck classes; the reader is referred to (2), § 2, for a definition of those classes. In the present paper we are interested in homomorphs satisfying the following additional closure property:(W0) if A is abelian with elementary Sylow subgroups, then each wreath product A G (with respect to an arbitrary permutation representation of G) with G ∊ is contained in .

Class (set theory)PermutationPure mathematicsWreath productGeneral MathematicsSylow theoremsRepresentation (systemics)Abelian groupMathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct