Search results for "SYLOW"

showing 10 items of 79 documents

Sylow permutable subnormal subgroups of finite groups

2002

[EN] An extension of the well-known Frobenius criterion of p-nilpotence in groups with modular Sylow p-subgroups is proved in the paper. This result is useful to get information about the classes of groups in which every subnormal subgroup is permutable and Sylow permutable.

Complement (group theory)Finite groupAlgebra and Number TheorySylow theoremsGrups Teoria deExtension (predicate logic)CombinatoricsSubnormal subgroupMathematics::Group TheoryLocally finite groupPermutable subgroupComponent (group theory)ÀlgebraPermutable primeFinite groupMATEMATICA APLICADASubnormal subgroupMathematics
researchProduct

Character Tables and Sylow Subgroups Revisited

2018

Suppose that G is a finite group. A classical and difficult problem is to determine how much the character table knows about the local structure of G and vice versa.

Difficult problemPure mathematicsFinite group010102 general mathematicsSylow theorems01 natural sciencesLocal structureConjugacy classCharacter table0103 physical sciences010307 mathematical physics0101 mathematicsVersaMathematics
researchProduct

Real groups and Sylow 2-subgroups

2016

Abstract If G is a finite real group and P ∈ Syl 2 ( G ) , then P / P ′ is elementary abelian. This confirms a conjecture of Roderick Gow. In fact, we prove a much stronger result that implies Gow's conjecture.

Discrete mathematicsConjectureGroup (mathematics)General Mathematics010102 general mathematicsSylow theorems01 natural sciencesCombinatoricsLocally finite group0103 physical sciences010307 mathematical physics0101 mathematicsAbelian groupMathematicsAdvances in Mathematics
researchProduct

Character sums and double cosets

2008

Abstract If G is a p-solvable finite group, P is a self-normalizing Sylow p-subgroup of G with derived subgroup P ′ , and Ψ is the sum of all the irreducible characters of G of degree not divisible by p, then we prove that the integer Ψ ( P ′ z P ′ ) is divisible by | P | for all z ∈ G . This answers a question of J. Alperin.

Discrete mathematicsFinite groupAlgebra and Number TheoryDegree (graph theory)Character theorySylow theoremsCommutator subgroupFinite groupsCombinatoricsCharacter (mathematics)IntegerDouble cosetsCosetCharacter theoryMcKay conjectureMathematicsJournal of Algebra
researchProduct

McKay natural correspondences on characters

2014

Let [math] be a finite group, let [math] be an odd prime, and let [math] . If [math] , then there is a canonical correspondence between the irreducible complex characters of [math] of degree not divisible by [math] belonging to the principal block of [math] and the linear characters of [math] . As a consequence, we give a characterization of finite groups that possess a self-normalizing Sylow [math] -subgroup or a [math] -decomposable Sylow normalizer.

Discrete mathematicsFinite groupAlgebra and Number TheoryDegree (graph theory)self-normalizing Sylow subgroup20C15Sylow theoremsBlock (permutation group theory)Characterization (mathematics)Centralizer and normalizerPrime (order theory)$p$-decomposable Sylow normalizerCombinatoricsMathematics::Group TheoryMcKay conjecture20C20MathematicsAlgebra & Number Theory
researchProduct

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

2016

In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups.

Discrete mathematicsFinite groupCoprime integersP-supersoluble groupGeneral MathematicsS-semipermutable subgroup010102 general mathematicsSylow theoremsGrups Teoria deOrder (ring theory)01 natural sciencesPrime (order theory)CombinatoricsGlobal informationLocally finite group0103 physical sciences010307 mathematical physicsFinite group0101 mathematicsMATEMATICA APLICADAMatemàticaMathematicsArchiv der Mathematik
researchProduct

On self-normalising subgroups of finite groups

2010

[EN] The aim of this paper is to characterise the classes of groups in which every subnormal subgroup is normal, permutable, or S-permutable by the embedding of the subgroups (respectively, subgroups of prime power order) in their normal, permutable, or S-permutable closure, respectively.

Discrete mathematicsFinite groupPst-groupAlgebra and Number TheoryMathematics::CombinatoricsGrups Teoria deAlgebraMathematics::Group TheoryT-groupPt-groupT-groupPermutabilitySylow permutabilityÀlgebraAlgebra over a fieldFinite groupPermutable closureSubnormal closureMATEMATICA APLICADAGroup theoryMathematics
researchProduct

On the orders of zeros of irreducible characters

2009

Let G be a finite group and p a prime number. We say that an element g in G is a vanishing element of G if there exists an irreducible character χ of G such that χ (g) = 0. The main result of this paper shows that, if G does not have any vanishing element of p-power order, then G has a normal Sylow p-subgroup. Also, we prove that this result is a generalization of some classical theorems in Character Theory of finite groups. © 2008 Elsevier Inc. All rights reserved.

Discrete mathematicsFinite groupPure mathematicsBrauer's theorem on induced charactersAlgebra and Number Theoryirreducible character zeroCharacter theorySylow theoremsPrime numberIrreducible elementFinite groupsCharacter (mathematics)Order (group theory)Zeros of charactersCharactersMathematics
researchProduct

𝑝-rational characters and self-normalizing Sylow 𝑝-subgroups

2007

Let G G be a finite group, p p a prime, and P P a Sylow p p -subgroup of G G . Several recent refinements of the McKay conjecture suggest that there should exist a bijection between the irreducible characters of p ′ p’ -degree of G G and the irreducible characters of p ′ p’ -degree of N G ( P ) \mathbf {N}_G(P) , which preserves field of values of correspondent characters (over the p p -adics). This strengthening of the McKay conjecture has several consequences. In this paper we prove one of these consequences: If p > 2 p>2 , then G G has no non-trivial p ′ p’ -degree p p -rational irreducible characters if and only if N G ( P ) = P \mathbf {N}_G(P)=P .

Discrete mathematicsMathematics (miscellaneous)Locally finite groupSylow theoremsMathematicsRepresentation Theory of the American Mathematical Society
researchProduct

THE STRUCTURE OF MUTUALLY PERMUTABLE PRODUCTS OF FINITE NILPOTENT GROUPS

2007

We consider mutually permutable products G = AB of two nilpotent groups. The structure of the Sylow p-subgroups of its nilpotent residual is described.

Discrete mathematicsMathematics::Group TheoryPure mathematicsNilpotentGeneral MathematicsMathematics::Rings and AlgebrasSylow theoremsStructure (category theory)Permutable primeNilpotent groupMathematics::Representation TheoryMathematicsInternational Journal of Algebra and Computation
researchProduct