Search results for "SYMMETRIES"

showing 10 items of 84 documents

Nature of the light scalar mesons

2005

Despite the apparent simplicity of meson spectroscopy, light scalar mesons cannot be accommodated in the usual $q\bar q$ structure. We study the description of the scalar mesons below 2 GeV in terms of the mixing of a chiral nonet of tetraquarks with conventional $q\bar q$ states. A strong diquark-antidiquark component is found for several states. The consideration of a glueball as dictated by quenched lattice QCD drives a coherent picture of the isoscalar mesons.

Nuclear and High Energy PhysicsParticle physicsMesonNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]IsoscalarHigh Energy Physics::Latticemeson massquark confinementLattice field theoryNuclear TheoryFOS: Physical sciencessparticles01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesquantum chromodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysics010308 nuclear & particles physicsGlueballHigh Energy Physics::PhenomenologyScalar (physics)lattice field theory12.39.-x 12.38.-tFísicaLattice QCDDiquarkHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentchiral symmetries
researchProduct

Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing

2011

7 páginas, 1 tabla.-- El Pdf es la versión pre-print: arXiv:1104.4961v2

Nuclear and High Energy PhysicsParticle physicsNeutrino hierarchyDiscrete symmetriesFOS: Physical sciences01 natural sciencesUpper and lower boundsHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciencesTri-bimaximal mixingNeutrino masses and mixingsNeutrinoless double beta decay010306 general physicsMixing (physics)Majorana equationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFlavor symmetries3. Good healthMassless particleMAJORANAHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoLepton
researchProduct

Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron

2012

The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6fb -1 of integrated luminosity at CDF and 5.2fb -1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example, in supersymmetry. The results are int…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelSTANDARD MODELP(P)OVER-BAR COLLISIONSTevatronFOS: Physical sciencesMASSLESS PARTICLES7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)Higgs particle: search for | Higgs particle: associated production | minimal supersymmetric standard model: parameter space | bottom: multiple production | cross section: branching ratio: upper limit | benchmark | DZERO | CDF | anti-p p: interaction | experimental results | Batavia TEVATRON Coll | anti-p p --> Higgs particle bottom anything | Higgs particle --> bottom anti-bottom | 1960 GeV-cms0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BROKEN SYMMETRIESTEVATRONMASSES010306 general physicsDETECTORSUPERSYMMETRYBosonPhysicsHIGGS BOSON010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDETECTOR; SUPERSYMMETRY; MASSES; MSSM; ROOT-S=1.96 TEV; BROKEN SYMMETRIES; MASSLESS PARTICLES; STANDARD MODEL; P(P)OVER-BAR COLLISIONSSupersymmetryScalar bosonROOT-S=1.96 TEVExperimental High Energy PhysicsHiggs bosonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCDFHigh Energy Physics::ExperimentMSSMMinimal Supersymmetric Standard Model
researchProduct

Glueball enhancement by color deconfinement

2007

5 pages, 4 figures.-- PACS nrs.: 14.80.-j; 24.80.+y; 25.75.Nq.-- ISI Article Identifier: 000245333000063.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0609219

Nuclear and High Energy PhysicsParticle physics[PACS] Nuclear tests of fundamental interactions and symmetriesNuclear Theory[PACS] Quark deconfinement quark-gluon plasma production and phase transitions in heavy-ion collisionsHigh Energy Physics::LatticeFOS: Physical sciencesDeconfinementQuantum chromodynamics (QCD)Nuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Color confinementNuclear ExperimentNuclear theoryQuantum chromodynamicsPhysicsQuark confinementGlueball[PACS] Other particles (including hypothetical)High Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologyColor modelHeavy ion-nucleus reactions
researchProduct

Do T asymmetries for neutrino oscillations in uniform matter have a CP-even component?

2019

Observables of neutrino oscillations in matter have, in general, contributions from the effective matter potential. It contaminates the CP violation asymmetry adding a fake effect that has been recently disentangled from the genuine one by their different behavior under T and CPT. Is the genuine T-odd CPT-invariant component of the CP asymmetry coincident with the T asymmetry? Contrary to CP, matter effects in uniform matter cannot induce by themselves a non-vanishing T asymmetry; however, the question of the title remained open. We demonstrate that, in the presence of genuine CP violation, there is a new non-vanishing CP-even, and so CPT-odd, component in the T asymmetry in matter, which i…

Nuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectFOS: Physical sciencesDiscrete Symmetries01 natural sciencesAsymmetryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityBeta (velocity)010306 general physicsNeutrino oscillationMixing (physics)media_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyObservableHigh Energy Physics - PhenomenologyCP violationlcsh:QC770-798CP violationHigh Energy Physics::ExperimentNeutrinoEnergy (signal processing)Journal of High Energy Physics
researchProduct

Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations

2018

CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both $\Delta m^2_{21},\, |a| \ll |\Delta m^2_{31}|$ without any assumptions between $\Delta m^2_{21}$ and $a$, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit $a \to 0$ to the T-invariant limit $\Delta m^2_{21} \to 0$. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we…

Nuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectPhase (waves)FOS: Physical sciencesDiscrete Symmetries01 natural sciencesAsymmetryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityLimit (mathematics)010306 general physicsNeutrino oscillationmedia_commonPhysics010308 nuclear & particles physicsOscillationHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyCP violationCP violationlcsh:QC770-798High Energy Physics::ExperimentNeutrinoLepton
researchProduct

Demonstration of the double Penning Trap technique with a single proton

2013

Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…

Nuclear and High Energy PhysicsProtonOrders of magnitude (temperature)Atomic Physics (physics.atom-ph)Other Fields of PhysicsFOS: Physical sciencesGeonium atomPenning traps01 natural sciencesphysics.atom-phPhysics - Atomic Physics010305 fluids & plasmasFundamental symmetries0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsSpin (physics)Nuclear ExperimentPhysicsPenning trapCPT testsMagnetic fieldAntiprotonPhysics::Accelerator PhysicsIon trapAtomic physicsPhysics Letters B
researchProduct

Gluon mass generation in the massless bound-state formalism

2013

We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation its…

Nuclear and High Energy PhysicsRenormalizationBethe–Salpeter equationHigh Energy Physics::LatticeBackground field methodFOS: Physical sciencesPinch techniqueRenormalizationTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeGauge symmetriesQuantum mechanicsGauge theory3-gluon vertexPhysicsBackground field methodDynamical symmetry breakingGlueballsPhysicsHigh Energy Physics - Lattice (hep-lat)Mass generationInvarianceHigh Energy Physics::PhenomenologyPropagatorQCDGluonMassless particleHigh Energy Physics - PhenomenologyFísica nuclear
researchProduct

Cross-sections and leptonic forward-backward asymmetries from the Z(0) running of LEP

2000

During 1993 and 1995 LEP was run at 3 energies near the Z $^0$ peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP operated only at the Z $^0$ peak. In total DELPHI accumulated data corresponding to an integrated luminosity of approximately 116 pb $^{-1}$ . Analyses of the hadronic cross-sections and of the cross-sections and forward-backward asymmetries in the leptonic channels used the most precise evaluations of the LEP energies. In the dimuon channel, events with a photon radiated from the initial state have been used to probe the cross-sections and asymmetries down to PETRA energies. Model independent fits to all DELPHI lineshape and asy…

Particle physicsE+E ANNIHILATIONPhysics and Astronomy (miscellaneous)Electron–positron annihilationSQUARE-ROOT-S=29 GEVHadronCHARGE ASYMMETRIES01 natural sciencesResonance (particle physics)LuminosityStandard ModelNuclear physicsMONTE-CARLOSLC ENERGIES0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSANGLE BHABHA SCATTERING010306 general physicsEngineering (miscellaneous)DELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)Weinberg angleMUON-PAIR PRODUCTIONSQUARE-ROOT-SLARGE ELECTRON POSITRON COLLIDEROF-MASS ENERGIESPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearMUON-PAIR PRODUCTION; ANGLE BHABHA SCATTERING; OF-MASS ENERGIES; SQUARE-ROOT-S; MONTE-CARLO; RADIATIVE-CORRECTIONS; SQUARE-ROOT-S=29 GEV; CHARGE ASYMMETRIES; E+E ANNIHILATION; SLC ENERGIESParticle Physics - Experiment
researchProduct

Precise measurement of the neutrino mixing parameter θ23 from muon neutrino disappearance in an off-axis beam

2014

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta_{23}. Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10^{20} protons on target, T2K has fit the energy-dependent nu_mu oscillation probability to determine oscillation parameters. Marginalizing over the values of other oscillation parameters yields sin^2 (theta_{23}) = 0.514 +0.055/-0.056 (0.511 +- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m^2_{32} = (2.51 +- 0.10) x 10^{-3} eV^2/c^4 (inverted hierarchy: Delta m^2_{13} = (2.48 +- 0.10) …

Particle physicsGeneral PhysicsPhysics MultidisciplinaryMODELSGeneral Physics and AstronomyFOS: Physical sciencesMASS01 natural sciences09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SCATTERINGMuon neutrino010306 general physicsNeutrino oscillationDETECTORMixing (physics)01 Mathematical SciencesPhysicsNeutronsScience & Technology02 Physical Sciences010308 nuclear & particles physicsScatteringOscillationhep-exPhysicsFísicaT2K CollaborationPhysical SciencesSYMMETRIESHigh Energy Physics::ExperimentNeutrinoHigh energy physics Mixing Parameter estimation Parameter extractionConfidence limit Energy dependent Neutrino oscillations Off-axis neutrino beam Oscillation parameters Oscillation probabilities Precise measurements Statistical uncertaintyBeam (structure)Energy (signal processing)
researchProduct