Search results for "Saaristomeri"

showing 3 items of 3 documents

Ecosystem Services at the Archipelago Sea Biosphere Reserve in Finland: A Visitor Perspective

2019

The United Nations Educational, Scientific and Cultural Organization&rsquo

Geography Planning and Development0211 other engineering and technologiesperspective02 engineering and technology010501 environmental sciences01 natural sciencesbiosphere reserveRenewable energy sourcesEcosystem servicesvirkistystoimintaGE1-350ta519biodiversitygeography.geographical_feature_categoryEnvironmental effects of industries and plantsEnvironmental resource managementconservationBiosphere021107 urban & regional planningekosysteemipalvelutvapaa-ajan asukkaatArchipelagoluonnonsuojelukonservointiseaBaltic Seata1172Land managementta1171TJ807-830Management Monitoring Policy and LawUNESCO Biosphere ReserveTD194-195maisemamatkailuhabitat typeRecreation0105 earth and related environmental sciencesgeographySustainable landscapingLand useRenewable Energy Sustainability and the Environmentbusiness.industryrecreationlandscapeluonnon monimuotoisuusarchipelagobiodiversiteettiecosystem serviceEnvironmental sciencesItämeriSaaristomerita1181businessTourismSustainability
researchProduct

Fiskodlingens betydelse inom Skärgårdshavets område : regionala och lokala effekter

2000

fiskodlingtaloudelliset vaikutuksetkalanviljelyympäristövaikutuksetSaaristomeriVarsinais-Suomialuetaloustyöllisyysvaikutukset
researchProduct

The “Seili-index” For The Prediction of Chlorophyll-α Levels In The Archipelago Sea of The Northern Baltic Sea, Southwest Finland

2021

AbstractTo build a forecasting tool for the state of eutrophication in the Archipelago Sea, we fitted a Generalized Additive Mixed Model (GAMM) to marine environmental monitoring data, which were collected over the years 2011–2019 by an automated profiling buoy at the Seili ODAS-station. The resulting “Seili-index” can be used to predict the chlorophyll-α (chl-a) concentration in the seawater a number of days ahead by using the temperature forecast as a covariate. An array of test predictions with two separate models on the 2019 data set showed that the index is adept at predicting the amount of chl-a especially in the upper water layer. The visualization with 10 days of chl-a level predict…

mallintaminenklorofylliIndex (economics)ympäristövaikutuksetcyanobacteriachemistry.chemical_compoundwindchlorophyllsyanobakteeritGeneral Environmental Sciencevesistötgeographygeography.geographical_feature_categoryrehevöityminentemperatureGeneralized Additive Mixed Model (GAMM)ennusteetprofling buoymerivesiOceanographyBaltic seachemistryympäristövaikutuksetSaaristomeriChlorophyllArchipelagoennustettavuuslämpötilamallit (mallintaminen)meret
researchProduct