Search results for "Saccharomyces cerevisiae Proteins"

showing 10 items of 231 documents

Protein kinase C controls activation of the DNA integrity checkpoint

2014

The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translatio…

Saccharomyces cerevisiae ProteinsCell cycle checkpointCell Cycle ProteinsProtein Serine-Threonine KinasesGenome Integrity Repair and ReplicationBiologyGeneticsHumansCHEK1Kinase activityCheckpoint Kinase 2Protein Kinase CProtein kinase CDNA-PKcsDNA integrity checkpointIntracellular Signaling Peptides and ProteinsG2-M DNA damage checkpointCell biologyCheckpoint Kinase 2Protein Kinase C-deltaBiochemistryMutationProtein Processing Post-TranslationalDNA DamageHeLa CellsMutagensNucleic Acids Research
researchProduct

The budding yeast Start repressor Whi7 differs in regulation from Whi5, emerging as a major cell cycle brake in response to stress

2020

ABSTRACT Start is the main decision point in the eukaryotic cell cycle at which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional programme through the inactivation of Start transcriptional repressors: the retinoblastoma family in mammals, or Whi5 and its recently identified paralogue Whi7 (also known as Srl3) in budding yeast. Here, we provide a comprehensive comparison of Whi5 and Whi7 that reveals significant qualitative differences. Indeed, the expression, subcellular localization and functionality of Whi7 and Whi5 are differentially regulated. Importantly, Whi7 shows specific properties in its association with promoters not share…

Saccharomyces cerevisiae ProteinsCell division[SDV]Life Sciences [q-bio]RepressorSaccharomyces cerevisiaeBiologyCell cycleCicle cel·lularStress13503 medical and health sciences0302 clinical medicineWhi7Gene Expression Regulation FungalmedicineWhi5030304 developmental biology0303 health sciencesRetinoblastomaCèl·lules eucariotesPromoterCell BiologyCell cycleSubcellular localizationmedicine.diseaseStartBudding yeastCell biologyRepressor ProteinsDecision points[SDV] Life Sciences [q-bio]SaccharomycetalesCell Division030217 neurology & neurosurgeryResearch Article
researchProduct

Cell cycle studies on the mode of action of yeast K28 killer toxin.

1996

The virally encoded K28 killer toxin of Saccharomyces cerevisiae kills sensitive cells by a receptor-mediated process. DNA synthesis is rapidly inhibited, cell viability is lost more slowly and cells eventually arrest, apparently in the S phase of the cell cycle with a medium-sized bud, a single nucleus in the mother cell and a pre-replicated (1n) DNA content. Cytoplasmic microtubules appear normal, and no spindle is detectable. Arrest of a sensitive haploid yeast strain by alpha-factor at START gave complete protection for at least 4 h against a toxin concentration that killed non-arrested cells at the rate of one log each 2.5 h. Cells released from alpha-factor arrest were killed by toxin…

Saccharomyces cerevisiae ProteinsCellSaccharomyces cerevisiaeSaccharomyces cerevisiaeBiologyMicrobiologyMicrotubulesS Phase4-ButyrolactonemedicineViability assayS phaseGeneticsDNA synthesisCell DeathCell CycleDNACell cycleMycotoxinsbiology.organism_classificationFlow CytometryKiller Factors YeastCell biologySpindle poisonmedicine.anatomical_structureCytoplasmFluorescent Antibody Technique Directmedicine.drugMicrobiology (Reading, England)
researchProduct

A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite

2019

Sulfite‐generating compounds are widely used during winemaking as preservatives because of its antimicrobial and antioxidant properties. Thus, wine yeast strains have developed different genetic strategies to increase its sulfite resistance. The most efficient sulfite detoxification mechanism in Saccharomyces cerevisiae uses a plasma membrane protein called Ssu1 to efflux sulfite. In wine yeast strains, two chromosomal translocations (VIIItXVI and XVtXVI) involving the SSU1 promoter region have been shown to upregulate SSU1 expression and, as a result, increase sulfite tolerance. In this study, we have identified a novel chromosomal rearrangement that triggers wine yeast sulfite adaptation.…

Saccharomyces cerevisiae ProteinsChromosomal rearrangementsWine yeastSaccharomyces cerevisiaeWineSaccharomyces cerevisiaeChromosomal rearrangementBiologyMicrobiology03 medical and health scienceschemistry.chemical_compoundSulfiteSulfitesPromoter Regions GeneticSSU1Ecology Evolution Behavior and Systematics030304 developmental biologyWinemakingGene RearrangementWine0303 health sciences030306 microbiologyInversionPromoterbiology.organism_classificationAdaptation PhysiologicalYeast in winemakingBiochemistrychemistryRegulatory sequenceFermentationChromosomes FungalSulfite resistanceEnvironmental Microbiology
researchProduct

A general strategy to determine the congruence between a hierarchical and a non-hierarchical classification

2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/442

Saccharomyces cerevisiae ProteinsComputer scienceDecision treecomputer.software_genrelcsh:Computer applications to medicine. Medical informaticsInteractomeBiochemistryPattern Recognition AutomatedMitochondrial ProteinsUser-Computer InterfaceSimilarity (network science)Structural BiologyArtificial IntelligenceSequence Analysis ProteinProtein Interaction MappingCluster AnalysisDatabases Proteinlcsh:QH301-705.5Molecular BiologyOligonucleotide Array Sequence AnalysisApplied MathematicsMethodology ArticleDendrogramDecision TreesReproducibility of ResultsClassificationPartition (database)Computer Science ApplicationsTree (data structure)Rankinglcsh:Biology (General)Pattern recognition (psychology)lcsh:R858-859.7Data miningcomputerBiological networkBMC Bioinformatics
researchProduct

Expression of yeast but not human apurinic/apyrimidinic endonuclease renders Chinese hamster cells more resistant to DNA damaging agents.

1997

Abasic sites represent ubiquitous DNA lesions that arise spontaneously or are induced by DNA-damaging agents. They block DNA replication and are considered to be cytotoxic and mutagenic. The key enzymes involved in the repair of abasic sites are apurinic/apyrimidinic (AP) endonucleases which process these lesions in an error-free mechanism. To analyze the role of AP endonuclease in the protection of mammalian cells against DNA damaging agents, we have transfected both the human (APE) and the yeast (APN1) AP endonuclease in Chinese hamster cells and compared the effects of expression of these genes in stable transfectants as to survival of cells and formation of chromosomal aberrations. Alth…

Saccharomyces cerevisiae ProteinsDNA RepairDNA repairCell SurvivalBlotting WesternCarbon-Oxygen LyasesChromosome DisordersCHO CellsToxicologyTransfectionAP endonucleaseDNA repair ; Apurinic endonuclease ; cellular defense mechanismschemistry.chemical_compoundCricetinaeGeneticsDNA-(Apurinic or Apyrimidinic Site) LyaseAnimalsHumansAP siteRNA MessengerFluorescent Antibody Technique IndirectMolecular BiologyCell NucleusChromosome AberrationsEndodeoxyribonucleasesbiologyCell DeathfungiNuclear ProteinsBase excision repairHydrogen PeroxideBlotting NorthernMethyl MethanesulfonateMolecular biologyDNA-(apurinic or apyrimidinic site) lyaseDNA Repair EnzymeschemistryGene Expression Regulationbiology.proteinChromosome breakageDNANucleotide excision repairDNA DamagePlasmidsMutation research
researchProduct

Role of glycine-82 as a pivot point during the transition from the inactive to the active form of the yeast Ras2 protein

1991

AbstractRas proteins bind either GDP or GTP with high affinity. However, only the GTP-bound form of the yeast Ras2 protein is able to stimulate adenylyl cyclase. To identify amino acid residues that play a role in the conversion from the GDP-bound to the GTP-bound state of Ras proteins, we have searched for single amino acid substitutions that selectively affected the binding of one of the two nucleotides. We have found that the replacement of glycine-82 of the Ras2 protein by serine resulted in an increased rate of dissociation of Gpp(NH)p, a nonhydrolysable analog of GTP, while the GDP dissociation rate was not significantly modified. Glycine-82 resides in a region that is highly conserve…

Saccharomyces cerevisiae ProteinsGTP'Guanosine diphosphateProtein ConformationRestriction MappingGlycineBiophysicsSaccharomyces cerevisiaeBiochemistryFungal ProteinsGTP-binding protein regulatorsProtein structureGTP-Binding ProteinsStructural BiologyEscherichia coliGeneticsRHO protein GDP dissociation inhibitorAmino Acid SequenceRas2Binding siteMolecular BiologyPeptide sequencechemistry.chemical_classificationGuanylyl ImidodiphosphateBinding SitesPoint mutationChemistryCell BiologyGuanosine triphosphateRecombinant ProteinsAmino acidModels StructuralBiochemistryMutagenesis Site-Directedras ProteinsS. cerevisaePlasmidsRasFEBS Letters
researchProduct

Rot1 plays an antagonistic role to Clb2 in actin cytoskeleton dynamics throughout the cell cycle.

2007

ROT1 is an essential gene whose inactivation causes defects in cell cycle progression and morphogenesis in budding yeast. Rot1 affects the actin cytoskeleton during the cell cycle at two levels. First, it is required for the maintenance of apical growth during bud growth. Second, Rot1 is necessary to polarize actin cytoskeleton to the neck region at the end of mitosis; because of this defect, rot1 cells do not properly form a septum to complete cell division. The inability to polarize the actin cytoskeleton at the end of mitosis is not due to a defect in the recruitment of the polarisome scaffold protein Spa2 or the actin cytoskeleton regulators Cdc42 and Cdc24 in the neck region. Previous …

Saccharomyces cerevisiae ProteinsGenes FungalArp2/3 complexmacromolecular substancesSaccharomyces cerevisiaeCyclin BActin remodeling of neuronsGene Expression Regulation FungalCDC2-CDC28 KinasesCytoskeletonCytoskeletonPolarisomebiologyCell CycleActin remodelingCell PolarityMembrane ProteinsCell BiologyActin cytoskeletonActinsCell biologyProfilinParacytophagyMutationbiology.proteinMolecular ChaperonesJournal of cell science
researchProduct

The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes

2003

Regulation of gene expression by mitogen-activated protein kinases (MAPKs) is essential for proper cell adaptation to extracellular stimuli. Exposure of yeast cells to high osmolarity results in rapid activation of the MAPK Hog1, which coordinates the transcriptional programme required for cell survival on osmostress. The mechanisms by which Hog1 and MAPKs in general regulate gene expression are not completely understood, although Hog1 can modify some transcription factors. Here we propose that Hog1 induces gene expression by a mechanism that involves recruiting a specific histone deacetylase complex to the promoters of genes regulated by osmostress. Cells lacking the Rpd3-Sin3 histone deac…

Saccharomyces cerevisiae ProteinsGenes FungalSaccharomyces cerevisiaeBiologySAP30Histone DeacetylasesOsmotic PressureGene Expression Regulation FungalPromoter Regions GeneticOligonucleotide Array Sequence AnalysisHistone deacetylase 5MultidisciplinaryHistone deacetylase 2HDAC11HDAC10HDAC9Molecular biologyHDAC4Cell biologyRepressor ProteinsMutationHistone deacetylase complexRNA Polymerase IIMitogen-Activated Protein KinasesProtein BindingTranscription FactorsNature
researchProduct

Response of the Saccharomyces cerevisiae Mpk1 Mitogen-Activated Protein Kinase Pathway to Increases in Internal Turgor Pressure Caused by Loss of Ppz…

2004

ABSTRACT The Mpk1 pathway of Saccharomyces cerevisiae is a key determinant of cell wall integrity. A genetic link between the Mpk1 kinase and the Ppz phosphatases has been reported, but the nature of this connection was unclear. Recently, the Ppz phosphatases were shown to be regulators of K + and pH homeostasis. Here, we demonstrate that Ppz-deficient strains display increased steady-state K + levels and sensitivity to increased KCl concentrations. Given these observations and the fact that K + is the major determinant of intracellular turgor pressure, we reasoned that the connection between PPZ1 and - 2 and MPK1 was due to the combination of increased internal turgor pressure in Ppz-defic…

Saccharomyces cerevisiae ProteinsGenotypeTranscription GeneticBlotting WesternTurgor pressureSaccharomyces cerevisiaePhosphataseSaccharomyces cerevisiaeMicrobiologyArticlePheromonesPotassium ChlorideCell wallPhosphoprotein PhosphatasesSorbitolPhosphorylationMolecular BiologyMembrane GlycoproteinsbiologyKinaseCalcium-Binding ProteinsIntracellular Signaling Peptides and ProteinsTemperatureMembrane ProteinsGeneral MedicineHydrogen-Ion ConcentrationBlotting Northernbiology.organism_classificationUp-RegulationPhenotypeBiochemistryMitogen-activated protein kinaseMutationPotassiumbiology.proteinPhosphorylationMitogen-Activated Protein KinasesIntracellularEukaryotic Cell
researchProduct