Search results for "Saccharomyces cerevisiae Proteins"

showing 10 items of 231 documents

Comparison of the killer toxin of several yeasts and the purification of a toxin of type K2

1984

A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a m…

Saccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiaemedicine.disease_causeBiochemistryMicrobiologySaccharomycesPichiaMicrobiologySpecies SpecificityYeastsGeneticsExtracellularmedicineIsoelectric PointAmino AcidsMolecular BiologyCandidaPichiachemistry.chemical_classificationbiologyStrain (chemistry)ToxinTemperatureGeneral MedicineHydrogen-Ion ConcentrationMycotoxinsbiology.organism_classificationKiller Factors YeastMolecular WeightIsoelectric pointchemistryBiochemistryGlycoproteinArchives of Microbiology
researchProduct

Differences in activation of MAP kinases and variability in the polyglutamine tract of Slt2 in clinical and non-clinical isolates of Saccharomyces ce…

2010

The concept of Saccharomyces cerevisiae as an emerging opportunistic pathogen is relatively new and it is due to an increasing number of human infections during the past 20 years. There are still few studies addressing the mechanisms of infection of this yeast species. Moreover, little is known about how S. cerevisiae cells sense and respond to the harsh conditions imposed by the host, and whether this response is different between clinical isolates and non-pathogenic strains. In this regard, mitogen-activated protein kinase (MAPK) pathways constitute one of the major mechanisms for controlling transcriptional responses and, in some cases, virulence in fungi. Here we show differences among …

Saccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeVirulenceBioengineeringSaccharomyces cerevisiaeBiologyApplied Microbiology and BiotechnologyBiochemistryMicrobiologyIndustrial MicrobiologyGene Expression Regulation FungalGeneticsHumansAlleleProtein kinase AGeneGeneticsPolymorphism GeneticVirulenceKinasePolyglutamine tractbiology.organism_classificationYeastMycosesMitogen-Activated Protein KinasesPeptidesBiotechnologyYeast
researchProduct

Analysis of the stress resistance of commercial wine yeast strains

2001

Alcoholic fermentation is an essential step in wine production that is usually conducted by yeasts belonging to the species Saccharomyces cerevisiae. The ability to carry out vinification is largely influenced by the response of yeast cells to the stress conditions that affect them during this process. In this work, we present a systematic analysis of the resistance of 14 commercial S. cerevisiae wine yeast strains to heat shock, ethanol, oxidative, osmotic and glucose starvation stresses. Significant differences were found between these yeast strains under certain severe conditions, Vitilevure Pris Mouse and Lalvin T73 being the most resistant strains, while Fermiblanc arom SM102 and UCLM …

Saccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeWineEthanol fermentationBiologyBiochemistryMicrobiologyFungal ProteinsOsmotic PressureGene Expression Regulation FungalYeastsGene expressionGeneticsMolecular BiologyGeneHeat-Shock ProteinsWineEthanolStrain (chemistry)General Medicinebiology.organism_classificationYeastOxidative StressYeast in winemakingGlucoseBiochemistryFermentationHeat-Shock ResponseArchives of Microbiology
researchProduct

AcetyltransferaseSAS2and sirtuinSIR2,respectively, control flocculation and biofilm formation in wine yeast

2014

Cell-to-cell and cell-to-environment interactions of microorganisms are of substantial relevance for their biotechnological use. In the yeast Saccharomyces cerevisiae, flocculation can be an advantage to clarify final liquid products after fermentation, and biofilm formation may be relevant for the encapsulation of strains of interest. The adhesion properties of wine yeast strains can be modified by the genetic manipulation of transcriptional regulatory proteins, such as histone deacetylases, and acetylases. Sirtuin SIR2 is essential for the formation of mat structures, a kind of biofilm that requires the expression of cell-wall protein FLO11 as its deletion reduces FLO11 expression, and ad…

Saccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeWineSaccharomyces cerevisiaeApplied Microbiology and BiotechnologyMicrobiologySirtuin 2Gene Expression Regulation FungalAllelesSilent Information Regulator Proteins Saccharomyces cerevisiaeHistone AcetyltransferasesWinebiologyBiofilmFlocculationfood and beveragesGeneral Medicinebiology.organism_classificationYeastYeast in winemakingPhenotypeBiochemistryBiofilmsAcetyltransferaseFermentationSirtuinbiology.proteinFermentationGene DeletionFEMS Yeast Research
researchProduct

Energetic aspects of intramolecular coupling between the nucleotide binding site and the distal switch II region of the yeast RAS2 protein

1994

AbstractWe have studied the interaction of the yeast RAS2 protein with guanine nucleotides using energetic parameters for the dissociation of RAS·nucleotide complexes. The results indicated that a Gly → Ser substitution at position 82 led to an altered interaction with GppNHp and, to a lesser extent, also with GDP. It was also possible to conclude that structural perturbation of Gly82 can stimulate nucleotide release by decreasing the energetic barrier for nucleotide dissociation. This, together with the observation that residues 80 and 81 are involved in the response of RAS to nucleotide exchange factors without affecting GDP binding per se, suggests a potential mechanism for exchange fact…

Saccharomyces cerevisiae ProteinsStereochemistryCdc25GuanineSaccharomyces cerevisiaeGlycineBiophysicsSaccharomyces cerevisiaeGuanosine DiphosphateBiochemistryFungal ProteinsStructure-Activity RelationshipSCD25chemistry.chemical_compoundGTP-Binding ProteinsStructural BiologyEscherichia coliSerineGeneticsNucleotideBinding siteRas2Molecular Biologychemistry.chemical_classificationGuanylyl ImidodiphosphateBinding SitesCDC25biologyGDP bindingTemperatureCell Biologybiology.organism_classificationGuanine NucleotidesRecombinant ProteinsYeastchemistryras ProteinsGDP exchange factorbiology.proteinThermodynamicsRASFEBS Letters
researchProduct

A short-range gradient of histone H3 acetylation and Tup1p redistribution at the promoter of the Saccharomyces cerevisiae SUC2 gene.

2003

Chromatin immunoprecipitation assays are used to map H3 and H4 acetylation over the promoter nucleosomes and the coding region of the Saccharomyces cerevisiae SUC2 gene, under repressed and derepressed conditions, using wild type and mutant strains. In wild type cells, a high level of H3 acetylation at the distal end of the promoter drops sharply toward the proximal nucleosome that covers the TATA box, a gradient that become even steeper on derepression. In contrast, substantial H4 acetylation shows no such gradient and extends into the coding region. Overall levels of both H3 and H4 acetylation rise on derepression. Mutation of GCN5 or SNF2 lead to substantially reduced SUC2 expression; in…

Saccharomyces cerevisiae ProteinsTATA boxMutantGene ExpressionSaccharomyces cerevisiaeBiologyBiochemistryPolymerase Chain ReactionHistonesNucleosomeRNA MessengerHistone H3 acetylationDNA FungalPromoter Regions GeneticMolecular BiologyDerepressionHistone AcetyltransferasesAdenosine Triphosphatasesbeta-FructofuranosidaseWild typeChromosome MappingNuclear ProteinsCell BiologyMolecular biologyDNA-Binding ProteinsRepressor ProteinsAcetylationMutagenesisChromatin immunoprecipitationProtein KinasesTranscription FactorsThe Journal of biological chemistry
researchProduct

The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast

2012

It has been recently stated that stress-responding genes in yeast are enriched in cryptic transcripts and that this is the cause of the differences observed between mRNA amount and RNA polymerase occupancy profiles. Other studies have shown that such differences are mainly due to modulation of mRNA stabilities. Here we analyze the relationship between the presence of cryptic transcripts in genes and their stress response profiles. Despite some of the stress-responding gene groups being indeed enriched in specific classes of cryptic transcripts, we found no statistically significant evidence that cryptic transcription is responsible for the differences observed between mRNA and transcription…

Saccharomyces cerevisiae ProteinsTRTranscription GeneticRNA StabilitySaccharomyces cerevisiaeChIPRNA polymerase IISaccharomyces cerevisiaetranscription rateBiochemistrySaccharomycesGenètica molecularchemistry.chemical_compoundSaccharomycesShort ArticleTranscripció genèticaStress PhysiologicalTranscription (biology)RNA polymeraseGeneticsRNA MessengerGeneGeneticsMessenger RNAbiologyRNAbiology.organism_classificationchemistrybiology.proteinRNARNA Polymerase IIBiotechnology
researchProduct

Study of the First Hours of Microvinification by the Use of Osmotic Stress-response Genes as Probes

2002

Summary When yeast cells are inoculated into grape must for vinification they find stress conditions because of osmolarity, which is due to very high sugar concentration, and pH lower than 4. In this work an analysis of the expression of three osmotic stress induced genes ( GPD1 , HSP12 and HSP104 ) under microvinification conditions is shown as a way to probe those stress situations and the regulatory mechanisms that control them. The results indicate that during the first hours of microvinification there is an increase in the GPD1 mRNA levels with a maximum about one hour after inoculation, and a decrease in the amount of HSP12 and HSP104 mRNAs, although with differences between them. The…

Saccharomyces cerevisiae ProteinsTime FactorsOsmotic shockSaccharomyces cerevisiaeGlycerolphosphate DehydrogenaseSaccharomyces cerevisiaeBiologyApplied Microbiology and BiotechnologyMicrobiologyOsmotic PressureGene Expression Regulation FungalRNA MessengerGeneHeat-Shock ProteinsEcology Evolution Behavior and SystematicsWinemakingOsmotic concentrationRNAHydrogen-Ion Concentrationbiology.organism_classificationYeastYeast in winemakingGlucoseBiochemistryFermentationDNA ProbesBiomarkersSystematic and Applied Microbiology
researchProduct

The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans.

2004

After screening a Candida albicans genome data base, the product of an open reading frame (IPF 19760/CA2574) with 41% identity to Saccharomyces cerevisiae vacuolar acid trehalase (Ath1p) was identified and named Atc1p. The deduced amino acid sequence shows that Atc1p contains an N-terminal hydrophobic signal peptide and 20 potential sites for N-glycosylation. C. albicans homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two ATC chromosomal alleles. Analysis of these null mutants shows that Atc1p is localized in the cell wall and is required for growth on trehalose as a carbon source. An Atc1p endowed with acid trehalase activity was obtained by …

Saccharomyces cerevisiae ProteinsTime FactorsTranscription GeneticMutantBlotting WesternMolecular Sequence DataTrehalase activityBiologyBiochemistrychemistry.chemical_compoundOpen Reading FramesCell WallCandida albicansAmino Acid SequenceRNA MessengerTrehalaseTrehalaseCandida albicansMolecular BiologyPeptide sequenceAlleleschemistry.chemical_classificationCell-Free SystemModels GeneticSequence Homology Amino AcidReverse Transcriptase Polymerase Chain ReactionStructural geneHomozygoteNuclear ProteinsTrehaloseCell BiologyDNAbiology.organism_classificationPhosphoproteinsTrehaloseCarbonAmino acidProtein Structure TertiaryGlucosechemistryBiochemistryProtein BiosynthesisMutationElectrophoresis Polyacrylamide GelCell DivisionPlasmidsThe Journal of biological chemistry
researchProduct

Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1

2014

13 páginas, 7 figuras, 2 yablas

Saccharomyces cerevisiae ProteinsTranscription Genetic(5-10) yAsf1Histone H2B ubiquitinationCell Cycle ProteinsSAGASaccharomyces cerevisiaeBiologyyeastMethylationTREX-2RNA TransportHistonesSus1Histone H3Histone H1Gene Expression Regulation FungalhistonesHistone H2ANucleosomeHistone codeTAP-MS strategyHistone ChaperonesRNA MessengerHistone octamerGeneticsNuclear ProteinsRNA-Binding ProteinsAcetylationCell BiologyYeastCell biologyRibonucleoproteinsHistone methyltransferaseProtein Processing Post-TranslationalMolecular ChaperonesResearch Paper
researchProduct