Search results for "Scalability"
showing 10 items of 221 documents
A Distributed Multi-Authority Attribute Based Encryption Scheme for Secure Sharing of Personal Health Records
2017
Personal health records (PHR) are an emerging health information exchange model, which facilitates PHR owners to efficiently manage their health data. Typically, PHRs are outsourced and stored in third-party cloud platforms. Although, outsourcing private health data to third-party platforms is an appealing solution for PHR owners, it may lead to significant privacy concerns, because there is a higher risk of leaking private data to unauthorized parties. As a way of ensuring PHR owners' control of their outsourced PHR data, attribute based encryption (ABE) mechanisms have been considered due to the fact that such schemes facilitate a mechanism of sharing encrypted data among a set of intende…
Scalable implementation of measuring distances in a Riemannian manifold based on the Fisher Information metric
2019
This paper focuses on the scalability of the Fisher Information manifold by applying techniques of distributed computing. The main objective is to investigate methodologies to improve two bottlenecks associated with the measurement of distances in a Riemannian manifold formed by the Fisher Information metric. The first bottleneck is the quadratic increase in the number of pairwise distances. The second is the computation of global distances, approximated through a fully connected network of the observed pairwise distances, where the challenge is the computation of the all sources shortest path (ASSP). The scalable implementation for the pairwise distances is performed in Spark. The scalable…
Scalability of GPU-Processed 3D Distance Maps for Industrial Environments
2018
This paper contains a benchmark analysis of the open source library GPU-Voxels together with the Robot Operating System (ROS) in large-scale industrial robotics environment. Six sensor nodes with embedded computing generate real-time point cloud data as ROS topics. The overall data from all sensor nodes is processed by a combination of CPU and GPU on a central ROS node. Experimental results demonstrate that the system is able to handle frame rates of 10 and 20 Hz with voxel sizes of 4, 6, 8 and 12 cm without saturation of the CPU or the GPU used by the GPU-Voxels library. The results in this paper show that ROS, in combination with GPU-Voxels, can be used as a viable solution for real-time …
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
2020
Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…
Secure and efficient verification for data aggregation in wireless sensor networks
2017
Summary The Internet of Things (IoT) concept is, and will be, one of the most interesting topics in the field of Information and Communications Technology. Covering a wide range of applications, wireless sensor networks (WSNs) can play an important role in IoT by seamless integration among thousands of sensors. The benefits of using WSN in IoT include the integrity, scalability, robustness, and easiness in deployment. In WSNs, data aggregation is a famous technique, which, on one hand, plays an essential role in energy preservation and, on the other hand, makes the network prone to different kinds of attacks. The detection of false data injection and impersonation attacks is one of the majo…
Deduplication Potential of HPC Applications’ Checkpoints
2016
HPC systems contain an increasing number of components, decreasing the mean time between failures. Checkpoint mechanisms help to overcome such failures for long-running applications. A viable solution to remove the resulting pressure from the I/O backends is to deduplicate the checkpoints. However, there is little knowledge about the potential to save I/Os for HPC applications by using deduplication within the checkpointing process. In this paper, we perform a broad study about the deduplication behavior of HPC application checkpointing and its impact on system design.
HPG pore: an efficient and scalable framework for nanopore sequencing data.
2016
The use of nanopore technologies is expected to spread in the future because they are portable and can sequence long fragments of DNA molecules without prior amplification. The first nanopore sequencer available, the MinION™ from Oxford Nanopore Technologies, is a USB-connected, portable device that allows real-time DNA analysis. In addition, other new instruments are expected to be released soon, which promise to outperform the current short-read technologies in terms of throughput. Despite the flood of data expected from this technology, the data analysis solutions currently available are only designed to manage small projects and are not scalable. Here we present HPG Pore, a toolkit for …
S-Aligner: Ultrascalable Read Mapping on Sunway Taihu Light
2017
The availability and amount of sequenced genomes have been rapidly growing in recent years because of the adoption of next-generation sequencing (NGS) technologies that enable high-throughput short-read generation at highly competitive cost. Since this trend is expected to continue in the foreseeable future, the design and implementation of efficient and scalable NGS bioinformatics algorithms are important to research and industrial applications. In this paper, we introduce S-Aligner–a highly scalable read mapper designed for the Sunway Taihu Light supercomputer and its fourth-generationShenWei many-core architecture (SW26010). S-Aligner employs a combination of optimization techniques to o…
Stochastic sampling effects favor manual over digital contact tracing.
2020
Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of contagion chains relies on two complementary strategies: manual reconstruction of contacts based on interviews and a digital (app-based) privacy-preserving contact tracing. We compare their effectiveness using model parameters tailored to describe SARS-CoV-2 diffusion within the activity-driven model, a general empirically validated framework for network dynamics. We show that, even for equal probability of tracing a contact, manual tracing robustly performs better than the digital protocol, also taking into accou…
2016
The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 alig…