Search results for "Scale model"
showing 10 items of 64 documents
Modelización computacional cardiaca
2020
[EN] Cardiovascular diseases currently have a major social and economic impact, constituting one of the leading causes of mortality and morbidity. Personalized computational models of the heart are demonstrating their usefulness both to help understand the mechanisms underlying cardiac disease, and to optimize their treatment and predict the patient's response. Within this framework, the Spanish Research Network for Cardiac Computational Modelling (VHeart-SN) has been launched. The general objective of the VHeart-SN network is the development of an integrated, modular and multiscale multiphysical computational model of the heart. This general objective is addressed through the following spe…
FE·Meshless multiscale modeling of heterogeneous periodic materials
2013
The computational mutiscale modeling of periodic heterogeneous materials, characterized by the assembly of units and joints, represents a compromise between the inaccuracy resulting from the macro modeling approach and the computational effort of the meso modeling. Assuming that the heterogeneities are orders of magnitude smaller than the structure dimensions, according to the multiscale approach, the macroscopic stresses and strains around a certain point can be found by averaging the stresses and the strains in a small representative part of the microstructure or a representative volume element (RVE) attributed to that point. A first-order two-scale scheme has been used to model heterogen…
two-scale three-dimensional boundary element framework for degradation and failure in polycrystalline materials
2014
A fully three-dimensional two-scale boundary element approach to degradation and failure in polycrystalline materials is proposed. The formulation involves the engineering component level (macroscale) and the material grain scale (micro-scale). The damage-induced local softening at the macroscale is modelled employing an initial stress approach. The microscopic degradation processes are explicitly modelled by associating Representative Volume Elements (RVEs) to relevant points of the macro continuum and employing a three-dimensional grain-boundary formulation to simulate intergranular degradation and failure in the microstructural Voronoi-type morphology through cohesive-frictional contact …
Limits of lateral expansion in two-dimensional materials with line defects
2021
The flexibility of two-dimensional (2D) materials enables static and dynamic ripples that are known to cause lateral contraction, shrinking of the material boundary. However, the limits of 2D materials' \emph{lateral expansion} are unknown. Therefore, here we discuss the limits of intrinsic lateral expansion of 2D materials that are modified by compressive line defects. Using thin sheet elasticity theory and sequential multiscale modeling, we find that the lateral expansion is inevitably limited by the onset of rippling. The maximum lateral expansion $\chi_{max}\approx 2.1\cdot t^2\sigma_d$, governed by the elastic thickness $t$ and the defect density $\sigma_d$, remains typically well belo…
Prosthetic modelling and simulation
2020
Abstract Modelling of physical systems can be divided into two categories: physical and mathematical modelling. Physical modelling is a process in which we construct tangible scale models that look very much like the real system. In the past century, consider the animal models that have significantly influenced the development of disease treatment and artificial joints. However, scale models require a great deal of time and resources to develop and there are limits to what can be learned from them. Mathematical or behavioural modelling is a more abstract system used for studying a research question that does not necessarily lend itself to physical modelling. In these models, the system is s…
Spatial graphs and Convolutive Models
2020
In the last two decades, many complex systems have benefited from the use of graph theory, and these approaches have shown robust applicability in the field of finance, computer circuits and in biological systems. Large scale models of brain systems make also a great use of random graph models. Graph theory can be instrumental in modeling the connectivity and spatial distribution of neurons, through a characterization of the relative topological properties. However, all approaches in studying brain function have been so far limited to use experimental constraints obtained at a macroscopic level (e.g. fMRI, EEG, MEG, DTI, DSI). In this contribution, we present a microscopic use (i.e. at the …
University campuses as small-scale models of cities: Quantitative assessment of a low carbon transition path
2019
Abstract The energy efficiency interventions and rehabilitation actions regarding university campuses are characterized by an emblematic impact, representing significant examples of good practices that a given community could adopt, even at the city level. Starting from the idea that campuses may be regarded as small scale models of cities, a quantitative method for estimating to which extent the adoption of a given set of interventions by a municipality could contribute to make such city close to a nearly zero energy profile is proposed. To accomplish this task, the study considers the low carbon transition path of the campus of the University of Palermo and applies a simple method that, i…
Micro-Meso Scale Model of Electrospun Poly (Ester Urethane) Urea Scaffolds
2009
Soft tissue engineering applications require accurate descriptions of native and engineered tissue microstructure and their contributions to global mechanical behavior [1–6]. Moreover, micro scale based mechanical models can be used to: (1) guide tissue engineering scaffold design, (2) provide a better understanding of cellular mechanical and metabolic response to local micro-structural deformations, and (3) investigate structural changes as a function of deformation across multiple scales. We present a novel approach to automatically collect micro-architectural data (fibers overlaps, fiber connectivity, and fiber orientation) from SEM images of electrospun poly (ester urethane) urea (PEUU)…
A process model of electrodialysis including membrane deformation effects
2020
Electrodialysis (ED) is an electro-driven process that makes use of ion exchange membranes (IEMs) under an applied electric field. The main application of ED is the desalination for drinking water production. A transmembrane pressure (TMP) distribution may arise in ED stacks due to an uneven pressure distribution in the two fluid channels, thus causing membrane/channel deformation and flow redistribution. This can occur in large-scale non-parallel configurations, e.g. crossflow arrangements. Detrimental effects of membrane deformation have widely been studied with reference to several membrane processes. However, this aspect has been neglected in ED applications. In this work, a novel proce…
Displacements measurement in a building model using the speckle photography technique
2005
The use of reduced scale models in civil engineering has made it possible to study large structures such as buildings. Using non-destructive optical techniques such as double-exposure speckle photography, extremely valuable results can be obtained, where mathematical methods are often not very exact. This work studies the model of an eighteen-storey building in which displacements can be measured at each storey of each view. It also presents a comparison of the displacement field, which was obtained with the Finite Element Method.