Search results for "Schwarzschild radius"
showing 10 items of 55 documents
Dynamics of oscillating magnetized relativistic tori around a Schwarzschild black hole
2007
We present a comprehensive numerical study of the dynamics of magnetized relativistic axisymmetric tori orbiting in the background spacetime of a Schwarzschild black hole. The tori are modeled as having a purely toroidal magnetic field and a constant distribution of the specific angular momentum. Following previous investigations of tori in a purely hydrodynamical context, the dynamics of these objects has been studied upon the introduction of a perturbation which, for the values of the magnetic field considered here, triggers quasi-periodic oscillations (QPOs) lasting tens of orbital periods. As in the hydrodynamical case, the spectral distribution of the eigenfrequencies shows the presenc…
Labeling spherically symmetric spacetimes with the Ricci tensor
2017
We complete the intrinsic characterization of spherically symmetric solutions partially accomplished in a previous paper [Class.Quant.Grav. (2010) 27 205024]. In this approach we consider every compatible algebraic type of the Ricci tensor, and we analyze specifically the conformally flat case for perfect fluid and Einstein-Maxwell solutions. As a direct application we obtain the {\em ideal} labeling (exclusively involving explicit concomitants of the metric tensor) of the Schwarzschild interior metric and the Vaidya solution. The Stephani universes and some significative subfamilies are also characterized.
Relativistic positioning: four-dimensional numerical approach in Minkowski space-time
2011
We simulate the satellite constellations of two Global Navigation Satellite Systems: Galileo (EU) and GPS (USA). Satellite motions are described in the Schwarzschild space-time produced by an idealized spherically symmetric non rotating Earth. The trajectories are then circumferences centered at the same point as Earth. Photon motions are described in Minkowski space-time, where there is a well known relation, Coll, Ferrando & Morales-Lladosa (2010), between the emission and inertial coordinates of any event. Here, this relation is implemented in a numerical code, which is tested and applied. The first application is a detailed numerical four-dimensional analysis of the so-called emissi…
Accretion-induced quasinormal mode excitation of a Schwarzschild black hole
2007
By combining the numerical solution of the nonlinear hydrodynamics equations with the solution of the linear inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations we investigate the properties of the gravitational radiation emitted during the axisymmetric accretion of matter onto a Schwarzschild black hole. The matter models considered include quadrupolar dust shells and thick accretion disks, permitting us to simulate situations which may be encountered at the end stages of stellar gravitational collapse or binary neutron star merger. We focus on the interference pattern appearing in the energy spectra of the emitted gravitational waves and on the amount of excitation of the quasi-nor…
Spacetime Foam Model of the Schwarzschild Horizon
2003
We consider a spacetime foam model of the Schwarzschild horizon, where the horizon consists of Planck size black holes. According to our model the entropy of the Schwarzschild black hole is proportional to the area of its event horizon. It is possible to express geometrical arguments to the effect that the constant of proportionality is, in natural units, equal to one quarter.
Microscopic black-hole pairs in highly excited states
2001
We consider the quantum mechanics of a system consisting of two identical, Planck-size Schwarzschild black holes revolving around their common center of mass. We find that even in a very highly-excited state such a system has very sharp, discrete energy eigenstates, and the system performs very rapid transitions from a one stationary state to another. For instance, when the system is in the 100th excited state, the life times of the energy eigenstates are of the order of $10^{-30}$ s, and the energies of gravitons released in transitions between nearby states are of the order of $10^{22}$ eV.
Gauge-invariant Non-spherical Metric Perturbations of Schwarzschild Black-Hole Spacetimes
2005
The theory of gauge-invariant non-spherical metric perturbations of Schwarzschild black hole spacetimes is now well established. Yet, as different notations and conventions have been used throughout the years, the literature on the subject is often confusing and sometimes confused. The purpose of this paper is to review and collect the relevant expressions related to the Regge-Wheeler and Zerilli equations for the odd and even-parity perturbations of a Schwarzschild spacetime. Special attention is paid to the form they assume in the presence of matter-sources and, for the two most popular conventions in the literature, to the asymptotic expressions and gravitational-wave amplitudes. Besides…
An intrinsic characterization of spherically symmetric spacetimes
2010
We give the necessary and sufficient (local) conditions for a metric tensor to be a non conformally flat spherically symmetric solution. These conditions exclusively involve explicit concomitants of the Riemann tensor. As a direct application we obtain the {\em ideal} labeling of the Schwarzschild, Reissner-Nordstr\"om and Lema\^itre-Tolman-Bondi solutions.
Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case
2018
We study quasi-normal modes of black holes, with a focus on resonant (or quasi-normal mode) expansions, in a geometric frame based on the use of conformal compactifications together with hyperboloidal foliations of spacetime. Specifically, this work extends the previous study of Schwarzschild in this geometric approach to spherically symmetric asymptotically flat black hole spacetimes, in particular Reissner-Nordstr\"om. The discussion involves, first, the non-trivial technical developments needed to address the choice of appropriate hyperboloidal slices in the extended setting as well as the generalization of the algorithm determining the coefficients in the expansion of the solution in te…
Systematic Redshift of the Fe III UV Lines in Quasars. Measuring Supermassive Black Hole Masses under the Gravitational Redshift Hypothesis
2018
We find that the Fe III$\lambda\lambda$2039-2113 spectral feature in quasars appears systematically redshifted by amounts accountable under the hypothesis of gravitational redshift induced by the central supermassive black hole. Our analysis of 27 composite spectra from the BOSS survey indicates that the redshift and the broadening of the lines in the Fe III$\lambda\lambda$2039-2113 blend roughly follow the expected correlation in the weak limit of Schwarzschild geometry for virialized kinematics. Assuming that the Fe III UV redshift provides a measure of $M_{BH}\over R$ (${\Delta \lambda\over \lambda}\simeq{3\over2}{G\over c^2} {M_{BH}\over R}$) and using different estimates of the emittin…