Search results for "Scintillator"
showing 10 items of 172 documents
The MATHUSLA test stand
2020
The rate of muons from LHC $pp$ collisions reaching the surface above the ATLAS interaction point is measured and compared with expected rates from decays of $W$ and $Z$ bosons and $b$- and $c$-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 $\times$ 2.5 $\times$ 6.5~$\rm{m}^3$ active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three $(x…
Radioactivity control strategy for the JUNO detector
2021
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…
Calibration strategy of the JUNO experiment
2021
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]
Mitigation of backgrounds from cosmogenic 137 Xe in xenon gas experiments using 3 He neutron capture
2020
[EN] Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we f…
New Fast Interaction Trigger for ALICE
2017
The LHC heavy-ion luminosity and collision rate from 2021 onwards will considerably exceed the design parameters of the present ALICE forward trigger detectors and the introduction of the Muon Forward Tracker (MFT) will significantly reduce the space available for the new trigger detectors. To comply with these conditions a new Fast Interaction Trigger (FIT) will be built. FIT will be the main forward trigger, luminometer, and interaction-time detector. It will also determine multiplicity, centrality, and reaction plane of heavy-ion collisions. FIT will consist of two arrays of Cherenkov quartz radiators with MCP-PMT sensors and of a plastic scintillator ring. By increasing the overall acce…
Fast Interaction Trigger for ALICE upgrade
2022
We present the structure, functionalities and the first in-beam performance of the ALICE Fast Interaction Trigger (FIT). FIT comprises three detectors: FT0, FV0 and FDD, which use Cherenkov and scintillation effects to detect charged particles originating from proton-proton (pp) and heavy-ion collisions. FIT generates triggers for ALICE, monitors luminosity and background, measures collision time, and determines global collision parameters, such as forward multiplicity, centrality and event plane. FIT uses dedicated front-end electronics to measure time and charge of pulses at pp bunch crossing interval of 25 ns and pp (Pb-Pb) interaction rates of up to 1 MHz (50 kHz). FIT has been installe…
Probing the Merits of Different Event Parameters for the Identification of Light Charged Particles in CHIMERA CsI(Tl Detectors With Digital Pulse Sha…
2013
We investigated the merits of different event parameters in the identification of Light Charged Particles (LCPs) with CsI(Tl) scintillators read out by photodiodes at high incident energy (400 MeV/u). This investigation is made possible by digital signal processing the output signals. As in the conventional analogue case, the digitized signals allow the discrimination of light charged particles by computing the fast and slow components. In addition other identification parameters as the rise time of the output pulses of the CsI(Tl) come out nearly for free. Aim of this paper is the investigation of novel identification plots and the probe of their merits, in particular at relativistic energ…
Conceptual design of the AGATA 1$\pi$ array at GANIL
2017
The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on sim…
Iron-related luminescence centers in ZnWO 4 :Fe
2002
A systematic spectroscopic study of single ZnWO4 :Fe crystals with different iron concentrations has been performed under excitation by ultraviolet light, by synchrotron radiation or under photostimulation by near-infrared light. The luminescence of Fe3+-related centres has been studied. It is shown that iron centres of different types efficiently promote the formation of crystal defects at low temperatures. Electrons and holes can be trapped near Fe2+ or Fe3+ ions, which is further revealed in phosphorescence, thermostimulated or photostimulated luminescence. At room temperature the main effect of iron impurity is to reduce the light yield of a ZnWO4 scintillator.
Scintillation light produced by low-energy beams of highly-charged ions
2007
Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xe$^{q+}$ with various charge states between $q$=2 and $q$=18 have been used at energies between 5 keV and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and 100 nA. Beams of highly charged residual gas ions have been produced by the EBIS at 4.5 keV per charge and with low intensities down to 100 pA. The scintillator materials used are flat screens of P46 YA…