Search results for "Scintillator"

showing 10 items of 172 documents

The MATHUSLA test stand

2020

The rate of muons from LHC $pp$ collisions reaching the surface above the ATLAS interaction point is measured and compared with expected rates from decays of $W$ and $Z$ bosons and $b$- and $c$-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 $\times$ 2.5 $\times$ 6.5~$\rm{m}^3$ active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three $(x…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsBackscattered cosmic raysLong-lived particles; LHC; MATHUSLA; Backscattered cosmic raysFOS: Physical sciencesCosmic rayScintillator01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Atlas (anatomy)0103 physical sciencesmedicineDetectors and Experimental Techniques010306 general physicsphysics.ins-detInstrumentationSettore FIS/01PhysicsLuminosity (scattering theory)MuonLarge Hadron ColliderInteraction pointhep-ex010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Long-lived particlesMATHUSLAmedicine.anatomical_structureW′ and Z′ bosonsHigh Energy Physics::ExperimentLHCParticle Physics - ExperimentNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Radioactivity control strategy for the JUNO detector

2021

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsNuclear engineeringMonte Carlo methodControl (management)measurement methodsFOS: Physical sciencesQC770-798Scintillator7. Clean energy01 natural sciencesNOPE2_2Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Sensitivity (control systems)010306 general physicsPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica Sperimentaleradioactivity [background]suppression [background]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]Nuclear powerthreshold [energy]sensitivityNeutrino Detectors and Telescopes (experiments)GEANTNeutrinobusinessEnergy (signal processing)
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

Mitigation of backgrounds from cosmogenic 137 Xe in xenon gas experiments using 3 He neutron capture

2020

[EN] Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we f…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsScintillation and light emission processesGas and liquid scintillatorsFOS: Physical scienceschemistry.chemical_element01 natural sciences7. Clean energyHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICANuclear physicsGaseous detectorsSolidHigh Energy Physics - Experiment (hep-ex)XenonDouble beta decay0103 physical sciencesIsotopes of xenonSpallationNeutron010306 general physicsPhysics010308 nuclear & particles physicsFísicaInstrumentation and Detectors (physics.ins-det)Beta DecayNeutron temperatureNeutron capturechemistryScintillatorsRadioactive decayJournal of Physics G: Nuclear and Particle Physics
researchProduct

New Fast Interaction Trigger for ALICE

2017

The LHC heavy-ion luminosity and collision rate from 2021 onwards will considerably exceed the design parameters of the present ALICE forward trigger detectors and the introduction of the Muon Forward Tracker (MFT) will significantly reduce the space available for the new trigger detectors. To comply with these conditions a new Fast Interaction Trigger (FIT) will be built. FIT will be the main forward trigger, luminometer, and interaction-time detector. It will also determine multiplicity, centrality, and reaction plane of heavy-ion collisions. FIT will consist of two arrays of Cherenkov quartz radiators with MCP-PMT sensors and of a plastic scintillator ring. By increasing the overall acce…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsFast Interaction TriggerScintillatorALICE upgrade01 natural sciencesPLANACON XP85012Nuclear physics0103 physical sciencesRedundancy (engineering)MCP-PMT010306 general physicsInstrumentationCherenkov radiationCollision ratePhysicsLarge Hadron ColliderMuonta114010308 nuclear & particles physicsbusiness.industryDetectorElectrical engineeringbusinessCentralityHL-LHCdetector R&DNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Fast Interaction Trigger for ALICE upgrade

2022

We present the structure, functionalities and the first in-beam performance of the ALICE Fast Interaction Trigger (FIT). FIT comprises three detectors: FT0, FV0 and FDD, which use Cherenkov and scintillation effects to detect charged particles originating from proton-proton (pp) and heavy-ion collisions. FIT generates triggers for ALICE, monitors luminosity and background, measures collision time, and determines global collision parameters, such as forward multiplicity, centrality and event plane. FIT uses dedicated front-end electronics to measure time and charge of pulses at pp bunch crossing interval of 25 ns and pp (Pb-Pb) interaction rates of up to 1 MHz (50 kHz). FIT has been installe…

Nuclear and High Energy PhysicsPhysics::Instrumentation and Detectorsdetector performanceTime resolutionhiukkasfysiikkaScintillatorALICE FIT114 Physical sciencesscintillatortrigger detectorAlice fitmittajärjestelmätDetectors and Experimental TechniquesNuclear ExperimentInstrumentationtime resolutionTrigger detectorDetector performanceCherenkov detector
researchProduct

Probing the Merits of Different Event Parameters for the Identification of Light Charged Particles in CHIMERA CsI(Tl Detectors With Digital Pulse Sha…

2013

We investigated the merits of different event parameters in the identification of Light Charged Particles (LCPs) with CsI(Tl) scintillators read out by photodiodes at high incident energy (400 MeV/u). This investigation is made possible by digital signal processing the output signals. As in the conventional analogue case, the digitized signals allow the discrimination of light charged particles by computing the fast and slow components. In addition other identification parameters as the rise time of the output pulses of the CsI(Tl) come out nearly for free. Aim of this paper is the investigation of novel identification plots and the probe of their merits, in particular at relativistic energ…

Nuclear and High Energy PhysicsPhysics::Instrumentation and Detectorsintermediate energy nuclear physicpulse shape analysiScintillatorParticle identificationlaw.inventionOpticslawElectrical and Electronic EngineeringDigital signal processingPhysicsonline digital signal processingSignal processingsezeleCsI(Tl) scintillatorsbusiness.industrypulse shape analysisDetectorCsI(Tl) scintillatorCsI(Tl) scintillators; intermediate energy nuclear physics; online digital signal processing; particle identification; pulse shape analysisCsI(Tl) scintillators; intermediate energy nuclear physics; online digital signal processing; particle identification; pulse shape analysis; Electrical and Electronic Engineering; Nuclear Energy and Engineering; Nuclear and High Energy PhysicsCharged particlePhotodiodeintermediate energy nuclear physicsNuclear Energy and EngineeringRise timeparticle identificationbusinessnuclear physics; heavy-ions; digital signal processing; scintillation detectors
researchProduct

Conceptual design of the AGATA 1$\pi$ array at GANIL

2017

The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on sim…

Nuclear and High Energy PhysicsPlunger devicePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotronScintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Accelerator Physics and InstrumentationTracking (particle physics)01 natural sciences7. Clean energylaw.inventionNuclear physicsConceptual designlaw0103 physical sciencesPARIS LaBr3 detectorNeutron detectionPulse shape analysisAGATA spectrometer010306 general physicsNuclear ExperimentInstrumentationPhysicsSpectrometerVAMOS plus plus spectrometer010308 nuclear & particles physicsDetectorFATIMA LaBr3 detectorAcceleratorfysik och instrumenteringDIAMANT detectorNEDA detectorAuthor Keywords:AGATA spectrometerPhysics::Accelerator PhysicsAGATAgamma-ray trackingGANIL facility
researchProduct

Iron-related luminescence centers in ZnWO 4 :Fe

2002

A systematic spectroscopic study of single ZnWO4 :Fe crystals with different iron concentrations has been performed under excitation by ultraviolet light, by synchrotron radiation or under photostimulation by near-infrared light. The luminescence of Fe3+-related centres has been studied. It is shown that iron centres of different types efficiently promote the formation of crystal defects at low temperatures. Electrons and holes can be trapped near Fe2+ or Fe3+ ions, which is further revealed in phosphorescence, thermostimulated or photostimulated luminescence. At room temperature the main effect of iron impurity is to reduce the light yield of a ZnWO4 scintillator.

Nuclear and High Energy PhysicsRadiationPhotoluminescenceChemistryPhotostimulated luminescenceAstrophysics::High Energy Astrophysical PhenomenaScintillatorCondensed Matter PhysicsPhotochemistryIonImpurityUltraviolet lightGeneral Materials SciencePhosphorescenceLuminescenceNuclear chemistryRadiation Effects and Defects in Solids
researchProduct

Scintillation light produced by low-energy beams of highly-charged ions

2007

Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xe$^{q+}$ with various charge states between $q$=2 and $q$=18 have been used at energies between 5 keV and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and 100 nA. Beams of highly charged residual gas ions have been produced by the EBIS at 4.5 keV per charge and with low intensities down to 100 pA. The scintillator materials used are flat screens of P46 YA…

Nuclear and High Energy PhysicsScintillationPhysics - Instrumentation and DetectorsIon beamChemistryPhysics::Instrumentation and DetectorsAtomic Physics (physics.atom-ph)FOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)ScintillatorIon gunIon sourceIonPhysics - Atomic PhysicsLight intensityIon beam depositionPhysics::Accelerator PhysicsAtomic physicsInstrumentation
researchProduct