Search results for "Second-harmonic generation"

showing 10 items of 116 documents

Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects

2007

We carried out second-harmonic generation in quasi-phase-matched ? -phase lithium niobate channel waveguides realized by proton exchange and surface periodic poling. Owing to a limited ferroelectric domain depth, we could observe the interplay between second-harmonic generation and self-phase modulation due to cascading and cubic effects, resulting in a nonlinear resonance shift. Data reduction allowed us to evaluate both the quadratic nonlinearity in the near infrared as well as the depth of the uninverted domains. © 2007 Optical

Nonlinear optics integrated opticsMaterials scienceGuided wave testingbusiness.industryLithium niobateNonlinear opticsSecond-harmonic generationPhysics::OpticsFOS: Physical sciencesStatistical and Nonlinear PhysicsHarmonic generation and mixingSettore ING-INF/01 - ElettronicaFerroelectricityAtomic and Molecular Physics and Opticschemistry.chemical_compoundOpticschemistryPeriodic polingNonlinear resonanceHigh harmonic generationbusinessPhysics - OpticsOptics (physics.optics)
researchProduct

Towards CEP stable sub two cycle IR pulse compression with bulk material

2010

We demonstrate both experimentally and numerically that self-steepening during propagation in a hollow-fiber followed by linear propagation through glass in the anomalous dispersion enables pulse compression down to 1.9 cycles at 1.8 micron wavelength.

Optical amplifierFemtosecond pulse shapingMaterials sciencebusiness.industryPhysics::OpticsSecond-harmonic generationAstrophysics::Cosmology and Extragalactic AstrophysicsWavelengthOpticsPulse compressionOptoelectronicsHigh harmonic generationHigh Energy Physics::ExperimentbusinessSelf-phase modulationBandwidth-limited pulseFrontiers in Optics 2010/Laser Science XXVI
researchProduct

Backward frequency doubling of near infrared picosecond pulses.

2014

We report on backward second-harmonic generation using ps laser pulses in congruent lithium niobate with 3.2 µm periodic poling. Three resonant peaks were measured between 1530 and 1730 nm, corresponding to 16th, 17th and 18th quasi-phase-matching orders in the backward configuration, with a conversion efficiency of 4.75 x 10(-5%)/W for the 16th order. We could also discriminate the contributions from inverted domains randomized in duty-cycle.

Optical amplifierMaterials sciencebusiness.industryLithium niobateEnergy conversion efficiencyNonlinear OpticSecond-harmonic generationSettore ING-INF/02 - Campi ElettromagneticiLaserHarmonic generation and mixingSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and Opticslaw.inventionchemistry.chemical_compoundOpticschemistryPeriodic polinglawParametric ProcessePicosecondPicosecond phenomenabusinessPhase conjugationOptics express
researchProduct

Grating-assisted third-harmonic generation in photonic crystal fibers using a pulse pump

2011

We demonstrate that quasi-phase-matching of the third-harmonic generation process can be obtained for a pulse pump in the photonic crystal fiber with a refractive-index grating. Conversion efficiency is calculated numerically using a system of coupled generalized nonlinear Schrodinger equations. We propose a special design of the microstructured fiber for the third-harmonic generation and analyze different phenomena limiting the maximum efficiency for short (femtosecond) and long (picosecond) pump pulses. Moreover, we show that a certain level of a group-velocity mismatch between the pump and the third harmonic can increase the maximum efficiency in the long pulse regime.

Optical fiberMaterials sciencebusiness.industryPhysics::OpticsNonlinear opticsSecond-harmonic generationStatistical and Nonlinear PhysicsGratingCoupled mode theoryAtomic and Molecular Physics and OpticsPulse (physics)law.inventionOpticslawFemtosecondOptoelectronicsbusinessPhotonic-crystal fiberJournal of the Optical Society of America B
researchProduct

Soft proton exchanged channel waveguides in congruent lithium tantalate for frequency doubling

2010

We report on stable optical waveguides fabricated by soft-proton exchange in periodically-poled congruent lithium tantalate in the a-phase. The channel waveguides are characterized in the telecom wavelength range in terms of both linear properties and frequency doubling. The measurements yield a nonlinear coefficient of about 9.5pm/V, demonstrating that the nonlinear optical properties of lithium tantalate are left nearly unaltered by the process. (C) 2010 Optical Society of America

Optical frequency multiplierMaterials scienceProtonPhysics::OpticsTantalumLithiumNonlinear opticalchemistry.chemical_compoundOpticsbusiness.industrySecond-harmonic generationOxidesEquipment DesignSurface Plasmon ResonanceAtomic and Molecular Physics and OpticsEquipment Failure AnalysisNonlinear systemRefractometrychemistryNonlinear DynamicsYield (chemistry)Lithium tantalateComputer-Aided DesignChannel (broadcasting)ProtonsbusinessNonlinear optics Integrated optics materials Waveguides Nonlinear optical devices
researchProduct

Triple excitation effects in coupled-cluster calculations of frequency-dependent hyperpolarizabilities

1998

Abstract We describe an implementation of an analytic scheme for the calculation of static and dynamical first hyperpolarizabilities at the CC3 level in the framework of coupled-cluster response theory. Calculations are reported for the static, the second harmonic generation, and the optical rectification hyperpolarizabilities of FH. The results indicate the importance of triple excitation effects for accurate theoretical predictions of hyperpolarizabilities and lend further support to previous contentions that an experimental value for the second harmonic generation hyperpolarizabilities of FH should be reconsidered.

Optical rectificationCoupled clusterChemistryPhysics::Atomic and Molecular ClustersGeneral Physics and AstronomyValue (computer science)Second-harmonic generationPhysics::Atomic PhysicsPhysical and Theoretical ChemistryAtomic physicsExcitationChemical Physics Letters
researchProduct

Measurement of optical second-harmonic generation from an individual single-walled carbon nanotube

2013

We show that optical second-harmonic generation (SHG) can be observed from individual single-walled carbon nanotubes (SWCNTs) and, furthermore, allows imaging of individual tubes. Detailed analysis of our results suggests that the structural noncentrosymmetry, as required for SHG, arises from the non-zero chiral angle of the SWCNT. SHG thus has potential as a fast, non-destructive, and simple method for imaging of individual nanomolecules and for probing their chiral properties. Even more, it opens the possibility to optically determine the handedness of individual SWCNTs.

PhysicsCondensed Matter - Mesoscale and Nanoscale Physicscarbon nanotubesbusiness.industryPhysicstoinen harmoninenGeneral Physics and AstronomySecond-harmonic generationFOS: Physical sciencesPhysics::OpticsCarbon nanotube114 Physical scienceshiilinanoputkilaw.inventionCondensed Matter::Materials SciencekuvantaminenlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Optoelectronicscarbon nanotubebusinesssecond-harmonicsecond-harmonic generation
researchProduct

Bi-color spatial solitons in linearly uncoupled planar waveguides

2004

We report on the observation of spatial optical simultons in a novel geometry consisting of two partially overlapped, linearly uncoupled planar waveguides in lithium niobate obtained by reverse proton exchange. Two orthogonally polarized modes are coupled through an off-diagonal tensor element of the quadratic nonlinearity, giving rise to second harmonic generation and mutual trapping via cascading. This phenomenon demonstrates a balance between diffraction and self-focusing for two orthogonal modes of different waveguides, and occurs at room temperature in longitudinally uniform waveguides.

PhysicsDiffractionPhysics and Astronomy (miscellaneous)Protonbusiness.industryLithium niobatePhysics::OpticsSecond-harmonic generationNonlinear opticsTrappingMolecular physicsAtomic and Molecular Physics and Opticschemistry.chemical_compoundOpticsPlanarchemistryTensorbusiness
researchProduct

Counter-propagating difference-frequency generation in diamond with terahertz fields

2013

The nonlinear interaction of terahertz (THz) pulses with optical fields in Kerr, gaseous media is a key ingredient for broadband THz detection schemes [1]. Terahertz field-induced second harmonic generation in solid-state media has also been considered for THz detection and as a tool e.g. for liquid dynamics investigations [2,3], while four-wave mixing has been addressed as a possible mechanism for THz generation [4,5]. © 2013 IEEE.

PhysicsKerr effectSum-frequency generationTerahertz radiationbusiness.industryNonlinear opticPhysics::OpticsDiamondSecond-harmonic generationengineering.materialSettore ING-INF/01 - ElettronicaTerahertz spectroscopy and technologyFour-wave mixingOpticsCross-polarized wave generationQuantum electronicsengineeringOptoelectronicsbusiness
researchProduct

Second harmonic generation in multimode graded-index fibers: spatial beam cleaning and multiple harmonic sideband generation

2017

We study experimentally and numerically the spectral and spatial dynamics of second harmonic generation in an all-optically poled multimode graded-index fiber. In contrast with poled single-mode fibers, in a multimode graded-index fiber a pump can generate a series of sharp sidebands around its second harmonic (SH) that originate from the sub-millimetric periodic evolution of the intensity at the fundamental frequency. The mutual interaction between the fundamental and its SH may also strongly affect the spatial distribution of guided light for both colors: when increasing the pump power, both fundamental and SH output beams evolve from disordered multimode speckles into two bell-shaped bea…

PhysicsMulti-mode optical fiberSidebandbusiness.industryLithium niobatePhysics::OpticsSecond-harmonic generation02 engineering and technologyFundamental frequency021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics010309 opticschemistry.chemical_compoundOpticschemistry0103 physical sciencesHarmonicFiber0210 nano-technologybusinessBeam (structure)Optics Letters
researchProduct