Search results for "Secretor"

showing 10 items of 159 documents

Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome

2020

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading …

0301 basic medicineBiopsyGeneral Physics and AstronomyGolgi ApparatusAnimals Biopsy Breast Neoplasms Cell Line Tumor Cell Transformation Neoplastic Female Fibroblasts Gene Expression Regulation Neoplastic Golgi Apparatus Humans Hypoxia-Inducible Factor 1 alpha Subunit Li-Fraumeni Syndrome Mice MicroRNAs Microtubules Mutation Primary Cell Culture Secretory Vesicles Signal TransductionSkin Tumor Microenvironment Tumor Suppressor Protein p53 Xenograft Model Antitumor Assays02 engineering and technologymedicine.disease_causeCell TransformationMicrotubulesSettore BIO/09 - FisiologiaMetastasisLi-Fraumeni SyndromeMiceTumor MicroenvironmentGolgisecretory machinerySuper-resolution microscopyAnimals; Biopsy; Breast Neoplasms; Cell Line Tumor; Cell Transformation Neoplastic; Female; Fibroblasts; Gene Expression Regulation Neoplastic; Golgi Apparatus; Humans; Hypoxia-Inducible Factor 1 alpha Subunit; Li-Fraumeni Syndrome; Mice; MicroRNAs; Microtubules; Mutation; Primary Cell Culture; Secretory Vesicles; Signal Transduction; Skin; Tumor Microenvironment; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assayslcsh:ScienceSkinMultidisciplinaryTumorChemistrymutant p53QCell migrationMicroRNASecretomics021001 nanoscience & nanotechnologyCell biologyGene Expression Regulation NeoplasticCell Transformation NeoplasticsymbolsFibroblastmiR-30dFemaleHypoxia-Inducible Factor 10210 nano-technologyBreast NeoplasmHumanSignal TransductionCancer microenvironmentStromal cellSecretory VesicleSciencePrimary Cell CultureBreast NeoplasmsMicrotubuleGolgi ApparatuSettore MED/08 - Anatomia Patologicaalpha SubunitGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencessymbols.namesakeCell Line TumormedicineAnimalsHumansSettore MED/05 - Patologia ClinicaSecretionTumor microenvironmentNeoplasticAnimalSecretory VesiclesGeneral ChemistryOncogenesGolgi apparatusHDAC6FibroblastsMicroreviewHypoxia-Inducible Factor 1 alpha SubunitmicroenvironmentXenograft Model Antitumor AssaysMicroRNAs030104 developmental biologyGene Expression RegulationMutationlcsh:QTumor Suppressor Protein p53Carcinogenesis
researchProduct

The Effect of a Novel c.820C>T (Arg274Trp) Mutation in the Mitofusin 2 Gene on Fibroblast Metabolism and Clinical Manifestation in a Patient

2017

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2). Mitofusin 2 is a GTPase protein present in the outer mitochondrial membrane and responsible for regulation of mitochondrial network architecture via the fusion of mitochondria. As that fusion process is known to be strongly dependent on the GTPase activity of mitofusin 2, it is postulated that the MFN2 mutation within the GTPase domain may lead to impaired GTPase activity, and in turn to mitochondrial dysfunction. The work described here has therefore sought to verify the effects of MFN2 mutation within its GTPase domain on mitochondrial and e…

0301 basic medicineMaleHydrolasesMutantMFN2lcsh:MedicineGTPaseMitochondrionmedicine.disease_causeEndoplasmic ReticulumBiochemistryGTP Phosphohydrolases0302 clinical medicineMental RetardationAnimal CellsCharcot-Marie-Tooth DiseaseMedicine and Health SciencesMissense mutationlcsh:ScienceEnergy-Producing OrganellesCells CulturedConnective Tissue CellsGeneticsMutationMultidisciplinarySecretory PathwayOrganic CompoundsMonosaccharidesTryptophanMitochondrial DNACell biologyMitochondriaEnzymesNucleic acidsChemistryNeurologyConnective TissueCell ProcessesPhysical SciencesCellular Structures and OrganellesCellular TypesAnatomyResearch ArticleForms of DNACarbohydratesMutation MissenseBiologyBioenergeticsArgininePolymorphism Single NucleotideMitochondrial Proteins03 medical and health sciencesMitofusin-2Young AdultmedicineGeneticsHumansEndoplasmic reticulumlcsh:ROrganic ChemistryChemical CompoundsBiology and Life SciencesProteinsCell BiologyDNAFibroblastsGuanosine Triphosphatase030104 developmental biologyBiological TissueGlucoseAmino Acid SubstitutionCase-Control StudiesMutationEnzymologylcsh:Q030217 neurology & neurosurgeryPLoS ONE
researchProduct

Oligodendrocytes Provide Antioxidant Defense Function for Neurons by Secreting Ferritin Heavy Chain.

2020

An evolutionarily conserved function of glia is to provide metabolic and structural support for neurons. To identify molecules generated by glia and with vital functions for neurons, we used Drosophila melanogaster as a screening tool, and subsequently translated the findings to mice. We found that a cargo receptor operating in the secretory pathway of glia was essential to maintain axonal integrity by regulating iron buffering. Ferritin heavy chain was identified as the critical secretory cargo, required for the protection against iron-mediated ferroptotic axonal damage. In mice, ferritin heavy chain is highly expressed by oligodendrocytes and secreted by employing an unconventional secret…

0301 basic medicineMalePhysiologyAntioxidantsArticlemetabolism [Oligodendroglia]03 medical and health sciencesMyelinMice0302 clinical medicineddc:570medicineAnimalsSecretionReceptorCytotoxicityMolecular BiologySecretory pathwayNeuronsbiologyChemistrymetabolism [Apoferritins]Cell Biologybiology.organism_classificationCell biologyFerritinMice Inbred C57BLOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemmetabolism [Neurons]Apoferritinsbiology.proteinmetabolism [Antioxidants]Drosophila melanogaster030217 neurology & neurosurgeryFunction (biology)Cell metabolism
researchProduct

Psychophysics, flare, and neurosecretory function in human pain models: capsaicin versus electrically evoked pain.

2007

Intradermal capsaicin injection (CAP) and electrical current stimulation (ES) are analyzed in respect to patterns and test-retest reliability of pain as well as sensory and neurosecretory changes. In 10 healthy subjects, 2 CAP (50 g) and 2 ES (5 to 30 mA) were applied to the volar forearm. The time period between 2 identical stimulations was about 4 months. Pain ratings, areas of mechanical hyperalgesia, and allodynia were assessed. The intensity of sensory changes was quantified by using quantitative sensory testing. Neurogenic flare was assessed by using laser Doppler imaging. Calcito- nin gene-related peptide (CGRP) release was quantified by dermal microdialysis in combination with an en…

AdultMaleTime FactorsSensory Receptor CellsCalcitonin Gene-Related PeptideModels NeurologicalPainStimulationSensory systemCalcitonin gene-related peptidechemistry.chemical_compoundmedicineNoxious stimulusLaser-Doppler FlowmetryPsychophysicsHumansPain MeasurementSkinNerve Fibers UnmyelinatedNeuronal Plasticitybusiness.industryNociceptorsMiddle AgedNeurosecretory SystemsElectric StimulationPeripheralAnesthesiology and Pain MedicineAllodyniaNeurologychemistryCapsaicinHyperalgesiaRegional Blood FlowAnesthesiaHyperalgesiaFemaleNeurology (clinical)medicine.symptomCapsaicinInflammation MediatorsbusinessThe journal of pain
researchProduct

Recovery of immune control over herpes simplex virus type 1 in female victims of intimate partner violence.

2009

Objectives: To assess the course of immune control over Herpes simplex virus type 1 (HSV-1) through three salivary measures: neutralization of HSV-1, levels of specific antibody against HSV-1 (HSV-1-sIgA) and total immunoglobulin A (total sIgA), and to determine the factors that contribute to its recovery or deterioration. Several studies have demonstrated that intimate partner violence (IPV) affects immune responses in women, but none have investigated the impact longitudinally over time. Methods: Women (n = 60), who participated in our previous cross-sectional study (T-1) and who had been either physically/psychologically (n = 22) or psychologically abused (n = 14) by their partners, were…

MaleSalivaDomestic ViolencePoison controlHerpesvirus 1 Humanmedicine.disease_causeAntibodies ViralSuicide preventionOccupational safety and healthTimeCytopathogenic Effect ViralNeutralization TestsInjury preventionMedicineHumansLongitudinal StudiesSalivaSpousesApplied PsychologyCrime VictimsPsychiatric Status Rating Scalesbusiness.industryImmunityHuman factors and ergonomicsHerpes SimplexCircadian RhythmPsychiatry and Mental healthHerpes simplex virusImmunoglobulin A SecretorySpouse AbuseDomestic violenceFemalebusinessSocial psychologyClinical psychologyPsychosomatic medicine
researchProduct

DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progr…

2016

Abstract Aging is a major risk factor for progression of liver diseases to hepatocellular carcinoma (HCC). Cellular senescence contributes to age-related tissue dysfunction, but the epigenetic basis underlying drug-induced senescence remains unclear. macroH2A1, a variant of histone H2A, is a marker of senescence-associated heterochromatic foci that synergizes with DNA methylation to silence tumor-suppressor genes in human fibroblasts. In this study, we investigated the relationship between macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, and liver carcinogenesis. We found that protein levels of both macroH2A1 isoforms were increased in the livers of very elderly rodents and humans, a…

0301 basic medicineEpigenomicsCHROMATINCancer ResearchLIVERCancer Research; OncologyGene ExpressionSECRETORY PHENOTYPEHCV CORE PROTEINHistonesCell MovementProtein IsoformsCellular SenescenceEpigenomicsAged 80 and overMice KnockoutbiologyLiver NeoplasmsMETHYLATIONHep G2 CellsCANCERChromatinHistoneOncologyDNA methylationAzacitidineDisease ProgressionCell agingSTEM-CELLSSenescenceAdultEXPRESSIONCarcinoma HepatocellularArticle5-AZA-2'-DEOXYCYTIDINE03 medical and health sciencesCell Line TumorAnimalsHumansEpigeneticsCell ProliferationDNA Methylationbeta-GalactosidaseMolecular biologyMice Inbred C57BLMICE030104 developmental biologybiology.proteinCancer researchDNA hypomethylation
researchProduct

Focus on the Small GTPase Rab1: A Key Player in the Pathogenesis of Parkinson’s Disease

2021

Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. It is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of large aggregates in the survival neurons called Lewy bodies, which mainly contain α-synuclein (α-syn). The cause of cell death is not known but could be due to mitochondrial dysfunction, protein homeostasis failure, and alterations in the secretory/endolysosomal/autophagic pathways. Survival nigral neurons overexpress the small GTPase Rab1. This protein is considered a housekeeping Rab that is necessary to support the secretory pathway, the maintenance of the Golgi complex structure, and the regulation of macroau…

autophagyParkinson's diseaseQH301-705.5Substantia nigraReviewBiologyCatalysisInorganic Chemistryα-synucleinmedicineAnimalsHumansSmall GTPaseBiology (General)Physical and Theoretical ChemistryQD1-999Molecular BiologySpectroscopySecretory pathwayRab1GTPasesOrganic ChemistryNeurodegenerationDopaminergicRAB1Parkinson DiseaseLRRK2General Medicinemedicine.diseaseLRRK2Computer Science Applicationssecretory pathwayrab1 GTP-Binding ProteinsChemistrynervous systemParkinson’s diseaseNeuroscienceGolgi fragmentationInternational Journal of Molecular Sciences
researchProduct

Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH

2001

Summary Arabidopsis copper chaperone (CCH) belongs to a family of eukaryotic proteins that participates in intracellular copper homeostasis by delivering this metal to the secretory pathway. In this work we show that the CCH protein is mainly located along the vascular bundles of senescing leaves and petioles, as shown by tissue prints and immunohistochemical detection. CCH protein also accumulates in stem sieve elements and is collected in phloem exudates. Accordingly, Arabidopsis CCH is the only member of the metallochaperone family described to function intercellularly to date. Moreover, the CCH protein remains stable when plants are subjected to excess copper that causes a rapid and spe…

chemistry.chemical_classificationendocrine systembiologyIntercellular transportCell BiologyPlant ScienceVascular bundlebiology.organism_classificationchemistryBiochemistryChaperone (protein)ArabidopsisGeneticsbiology.proteinMetalloproteinPhloem transportPhloemSecretory pathwayThe Plant Journal
researchProduct

Distribution and coexistence of chromogranin A-, serotonin-and pancreastatin-like immunoreactivity in endocrine-like cells of the human anal canal

1992

The comparative distribution and coexistence of chromogranin A (CGA)-, serotonin (5-hydroxytryptamine; 5-HT)- and pancreastatin (PST)-like immunoreactivity in endocrine-like cells of the human anal canal was investigated by light-microscopic immunocytochemistry. The largest population of colorectal endocrine-like cells consisted of CGA-immunoreactive (ir) cells, followed by the 5-HT-ir and PST-ir cell population. In the anal transitional zone (ATZ), CGA- and 5-HT-immunoreactivity was equally distributed; ir-PST was confined to a smaller endocrine-like cell population. In the squamous zone and the perianal skin, Merkel cells in the basal layer of the epidermis and hair follicles exhibited ir…

Serotoninendocrine systemPathologymedicine.medical_specialtyHistologyImmunocytochemistryPopulationAnal CanalFluorescent Antibody TechniqueCell CountBiologyPancreastatinPathology and Forensic MedicineChromograninsmedicineHumanseducationAnal Transitional ZoneSkineducation.field_of_studyintegumentary systemChromogranin ACell BiologyAnal canalPancreatic HormonesNeurosecretory Systemsmedicine.anatomical_structurebiology.proteinChromogranin AEpidermisMerkel cellCell & Tissue Research
researchProduct

Stx5 is a novel interactor of VLDL-R to affect its intracellular trafficking and processing

2012

We identified syntaxin 5 (Stx5), a protein involved in intracellular vesicle trafficking, as a novel interaction partner of the very low density lipoprotein (VLDL)-receptor (VLDL-R), a member of the LDL-receptor family. In addition, we investigated the effect of Stx5 on VLDL-R maturation, trafficking and processing. Here, we demonstrated mutual association of both proteins using several in vitro approaches. Furthermore, we detected a special maturation phenotype of VLDL-R resulting from Stx5 overexpression. We found that Stx5 prevented advanced Golgi-maturation of VLDL-R, but did not cause accumulation of the immature protein in ER, ER to Golgi compartments, or cis-Golgi ribbon, the main ex…

Low-density lipoprotein receptor-related protein 8Very Low-Density Lipoprotein ReceptorCHO CellsSTX5Biologysymbols.namesakeCricetulusCricetinaeAnimalsHumansSyntaxinSecretory PathwayQa-SNARE ProteinsCell Membranenutritional and metabolic diseasesIntracellular vesicleHep G2 CellsCell BiologyGolgi apparatusCell biologyProtein TransportHEK293 CellsReceptors LDLLDL receptorsymbolslipids (amino acids peptides and proteins)Protein Processing Post-TranslationalIntracellularProtein Bindingtrans-Golgi NetworkExperimental Cell Research
researchProduct