Search results for "Selection"
showing 10 items of 1940 documents
Extreme minimal learning machine: Ridge regression with distance-based basis
2019
The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an addit…
Selective visual odometry for accurate AUV localization
2015
In this paper we present a stereo visual odometry system developed for autonomous underwater vehicle localization tasks. The main idea is to make use of only highly reliable data in the estimation process, employing a robust keypoint tracking approach and an effective keyframe selection strategy, so that camera movements are estimated with high accuracy even for long paths. Furthermore, in order to limit the drift error, camera pose estimation is referred to the last keyframe, selected by analyzing the feature temporal flow. The proposed system was tested on the KITTI evaluation framework and on the New Tsukuba stereo dataset to assess its effectiveness on long tracks and different illumina…
Accurate keyframe selection and keypoint tracking for robust visual odometry
2016
This paper presents a novel stereo visual odometry (VO) framework based on structure from motion, where a robust keypoint tracking and matching is combined with an effective keyframe selection strategy. In order to track and find correct feature correspondences a robust loop chain matching scheme on two consecutive stereo pairs is introduced. Keyframe selection is based on the proportion of features with high temporal disparity. This criterion relies on the observation that the error in the pose estimation propagates from the uncertainty of 3D points—higher for distant points, that have low 2D motion. Comparative results based on three VO datasets show that the proposed solution is remarkab…
VARIABLE SELECTION FOR NOISY DATA APPLIED IN PROTEOMICS
2014
International audience; The paper proposes a variable selection method for pro-teomics. It aims at selecting, among a set of proteins, those (named biomarkers) which enable to discriminate between two groups of individuals (healthy and pathological). To this end, data is available for a cohort of individuals: the biological state and a measurement of concentrations for a list of proteins. The proposed approach is based on a Bayesian hierarchical model for the dependencies between biological and instrumental variables. The optimal selection function minimizes the Bayesian risk, that is to say the selected set of variables maximizes the posterior probability. The two main contributions are: (…
Input Selection Methods for Soft Sensor Design: A Survey
2020
Soft Sensors (SSs) are inferential models used in many industrial fields. They allow for real-time estimation of hard-to-measure variables as a function of available data obtained from online sensors. SSs are generally built using industries historical databases through data-driven approaches. A critical issue in SS design concerns the selection of input variables, among those available in a candidate dataset. In the case of industrial processes, candidate inputs can reach great numbers, making the design computationally demanding and leading to poorly performing models. An input selection procedure is then necessary. Most used input selection approaches for SS design are addressed in this …
Grading investment diversification options in presence of non-historical financial information
2021
Modern portfolio theory deals with the problem of selecting a portfolio of financial assets such that the expected return is maximized for a given level of risk. The forecast of the expected individual assets’ returns and risk is usually based on their historical returns. In this work, we consider a situation in which the investor has non-historical additional information that is used for the forecast of the expected returns. This implies that there is no obvious statistical risk measure any more, and it poses the problem of selecting an adequate set of diversification constraints to mitigate the risk of the selected portfolio without losing the value of the non-statistical information owne…
Measuring Social Responsibility: A Multicriteria Approach
2016
In this chapter we present a portfolio selection model for Socially Responsible Investment. The model, following the spirit of Socially Responsible Investment, consists of two different steps. Firstly, a social screening is applied in order to obtain the feasible set of assets accomplishing the socially responsible investment policy of the assets’ manager. In this step, an indicator is obtained for the measurement of the social responsibility degree of an asset. Assets are then ranked using this indicator from the most socially responsible to the less socially responsible. In a second step, once the feasible set is obtained, composed of those socially responsible assets verifying the screen…
How selection of collaborating partners impact on the green performance of global businesses? An empirical study of green sustainability
2020
In recent days, both collaboration and sustainability have become an integral part of many global supply chains to achieve business excellence. Although previous literature and actual practices confirmed the successful implementation of sustainability practices through supply chain collaborations, it is not clear how collaborating partners can support financial and environmental performance, and hence strengthen the partnership performance in the global supply chains. To address this practice-based research question, we test the theoretical underpinning of suppliers and logistics partners in relation to required skills selection. We capture the depth of interdependencies in collaborations f…
The ‘Open Garden of Politics’: The impact of open primaries for candidate selection in the British Conservative Party
2016
International audience; Since 2003, hundreds of open primaries for the selection of parliamentary candidates have been held by the British Conservative Party as a means of democratising party organisation and enhancing representativeness. In the run-up to the 2015 general election, only 26 primaries could be identified. This article will apply the analytical framework provided by Hazan and Rahat to demonstrate that the relative failure of the experiment in terms of intra-party competition, participation, representation and responsiveness is counterbalanced by the benefits brought by this procedure, both as a tool of party branding at the national level and as a strategy for raising the prof…
Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy)
2016
Debris flows are among the most hazardous phenomena in nature, requiring the preparation of suscep- tibility models in order to cope with this severe threat. The aim of this research was to verify whether a grid cell-based susceptibility model was capable of predicting the debris- flow initiation sites in the Giampilieri catchment (10 km2), which was hit by a storm on the 1st October 2009, resulting in more than one thousand landslides. This kind of event is to be considered as recurrent in the area as attested by historical data. Therefore, predictive models have been prepared by using forward stepwise binary logistic regression (BLR), a landslide inventory and a set of geo- environmental …