Search results for "Sensory system"

showing 10 items of 1266 documents

Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury

2017

Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. In this regard, little is known about the acute-subacute processes after 24-48 h in th…

0301 basic medicinePatch-Clamp TechniquesTraumatic brain injurySomatosensory system03 medical and health sciences0302 clinical medicineCortex (anatomy)Unilateral lesionBrain Injuries TraumaticNeuroplasticitymedicineAnimalsDiaschisisNeuronal PlasticityMotor CortexElectroencephalographySomatosensory Cortexmedicine.diseaseMice Inbred C57BLDisease Models AnimalElectrophysiology030104 developmental biologymedicine.anatomical_structureBrain HemisphereNeurology (clinical)PsychologyNeuroscience030217 neurology & neurosurgeryJournal of Neurotrauma
researchProduct

Cilia - The sensory antennae in the eye

2017

Cilia are hair-like projections found on almost all cells in the human body. Originally believed to function merely in motility, the function of solitary non-motile (primary) cilia was long overlooked. Recent research has demonstrated that primary cilia function as signalling hubs that sense environmental cues and are pivotal for organ development and function, tissue hoemoestasis, and maintenance of human health. Cilia share a common anatomy and their diverse functional features are achieved by evolutionarily conserved functional modules, organized into sub-compartments. Defects in these functional modules are responsible for a rapidly growing list of human diseases collectively termed cil…

0301 basic medicinePathologymedicine.medical_specialtyEye Diseasesmedicine.medical_treatmentBiologyEyeCiliopathies03 medical and health sciencesCiliogenesismedicineHumansCiliaVision OcularRetinaCiliumStem-cell therapymedicine.diseaseSensory SystemsOphthalmologyCiliopathy030104 developmental biologymedicine.anatomical_structureNeuroscienceMuller gliaRetinal DystrophiesProgress in Retinal and Eye Research
researchProduct

The quality of cortical network function recovery depends on localization and degree of axonal demyelination

2016

AbstractMyelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state. In this study, we sought to characterize the time course of sensory and behavioral alterations induced…

0301 basic medicinePathologymedicine.medical_specialtyImmunologyCentral nervous systemSensationMedizinSensory systemBiologyAdaptive ImmunityWhite matter03 medical and health sciencesBehavioral NeuroscienceCuprizoneMice0302 clinical medicineWhite matter lesionmedicineBiological neural networkAnimalsRemyelinationGray MatterPathologicalMyelin SheathCerebral CortexBehavior AnimalEndocrine and Autonomic SystemsMultiple sclerosisLysophosphatidylcholinesThalamocortical systemRecovery of Functionmedicine.diseaseWhite MatterElectrodes ImplantedMice Inbred C57BLGray matter lesion030104 developmental biologymedicine.anatomical_structureRemyelinationDemyelinationTonotopyNerve NetNeuroscience030217 neurology & neurosurgeryDemyelinating Diseases
researchProduct

The human meibomian gland epithelial cell line as a model to study meibomian gland dysfunction

2016

The meibomian gland dysfunction (MGD) is the leading cause of dry eye disease (DED) throughout the world. The investigation of MGD lacks suitable in vivo and in vitro models. In 2010 a human meibomian gland epithelial cell line (HMGEC) was established, so far the only available meibomian gland cell line. The characterization of HMGEC is of major importance to clarify its suitability for studying the meibomian gland (patho)physiology in vitro. The current culture protocol and new concepts of HMGEC culture will be compared. Hormones are believed to be a key factor in meibomian gland dysfunction thus HMGEC responsiveness to hormone stimulation is crucial to elucidate the hormonal influence on …

0301 basic medicinePathologymedicine.medical_specialtyMeibomian glandBiologyModels BiologicalCell Line03 medical and health sciencesCellular and Molecular NeuroscienceHormone stimulation0302 clinical medicinestomatognathic systemRisk FactorsmedicineHumansGonadal Steroid HormonesCells Culturedintegumentary systemMeibomian gland dysfunctionMeibomian GlandsEpithelial CellsSensory SystemsEpitheliumAnti-Bacterial Agentsbody regionsOphthalmology030104 developmental biologymedicine.anatomical_structure030221 ophthalmology & optometryDry Eye Syndromessense organsOphthalmic SolutionsHormoneExperimental Eye Research
researchProduct

2017

Whether the central nervous system is capable to switch between contexts critically depends on experimental details. Motor control studies regularly adopt robotic devices to perturb the dynamics of a certain task. Other approaches investigate motor control by altering the gravitoinertial context itself as in parabolic flights and human centrifuges. In contrast to conventional robotic experiments, where only the hand is perturbed, these gravitoinertial or immersive settings coherently plunge participants into new environments. However radically different they are, perfect adaptation of motor responses are commonly reported. In object manipulation tasks, this translates into a good matching o…

0301 basic medicinePhysiologyComputer scienceInternal modelMotor controlSensory system03 medical and health sciences030104 developmental biology0302 clinical medicineHomogeneousPhysiology (medical)Time courseMotor systemPredictabilityGrip force030217 neurology & neurosurgerySimulationFrontiers in Physiology
researchProduct

Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat

2017

In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firings during hippocampal theta activation. The objective of this work is to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis w…

0301 basic medicinePhysiologyHippocampusSensory systemHippocampal formationNucleus IncertusPons03 medical and health sciences030104 developmental biology0302 clinical medicineLimbic systemmedicine.anatomical_structurenervous systemmedicinePremovement neuronal activityBrainstemPsychologyNeuroscience030217 neurology & neurosurgeryThe Journal of Physiology
researchProduct

Interactions between odorants and glutathione transferases in the human olfactory cleft

2020

AbstractXenobiotic metabolizing enzymes and other proteins, including odorant-binding proteins located in the nasal epithelium and mucus, participate in a series of processes modulating the concentration of odorants in the environment of olfactory receptors (ORs) and finely impact odor perception. These enzymes and transporters are thought to participate in odorant degradation or transport. Odorant biotransformation results in 1) changes in the odorant quantity up to their clearance and the termination of signaling and 2) the formation of new odorant stimuli (metabolites). Enzymes, such as cytochrome P450 and glutathione transferases (GSTs), have been proposed to participate in odorant clea…

0301 basic medicinePhysiologyOlfaction03 medical and health sciencesBehavioral NeuroscienceGSTP1chemistry.chemical_compound0302 clinical medicineOlfactory MucosaPhysiology (medical)glutathione transferasemedicine[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]HumanshumanReceptorGSTP1odorantchemistry.chemical_classificationbiologymusculoskeletal neural and ocular physiology[SCCO.NEUR]Cognitive science/NeuroscienceCytochrome P450TransporterGlutathioneSensory Systems3. Good health030104 developmental biologymedicine.anatomical_structureEnzymeGSTA1chemistryBiochemistryOdorantsbiology.proteinOlfactory epithelium[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgerypsychological phenomena and processesolfaction
researchProduct

Deviance sensitivity in the auditory cortex of freely moving rats.

2018

Deviance sensitivity is the specific response to a surprising stimulus, one that violates expectations set by the past stimulation stream. In audition, deviance sensitivity is often conflated with stimulus-specific adaptation (SSA), the decrease in responses to a common stimulus that only partially generalizes to other, rare stimuli. SSA is usually measured using oddball sequences, where a common (standard) tone and a rare (deviant) tone are randomly intermixed. However, the larger responses to a tone when deviant does not necessarily represent deviance sensitivity. Deviance sensitivity is commonly tested using a control sequence in which many different tones serve as the standard, eliminat…

0301 basic medicinePhysiologySensory Physiologylcsh:MedicineStimulationElectrode RecordingLocal field potentialAudiologyTetrodes0302 clinical medicineAnesthesiologyMedicine and Health SciencesAnesthesiaAudio Equipmentlcsh:ScienceMembrane ElectrophysiologyMultidisciplinaryPharmaceuticsBrainAdaptation PhysiologicalSensory SystemsLaboratory EquipmentSignal FilteringBioassays and Physiological AnalysisAuditory SystemVacuum ApparatusAuditory PerceptionEvoked Potentials AuditoryEngineering and TechnologyWakefulnessAnatomyPsychologyMicrophonesResearch ArticleAuditory perceptionmedicine.medical_specialtyComputer and Information SciencesHistologyEquipmentStimulus (physiology)Auditory cortexResearch and Analysis Methods03 medical and health sciencesDrug TherapymedicineAnimalsWakefulnessAuditory CortexControl Sequenceslcsh:RElectrophysiological TechniquesBiology and Life SciencesComputing MethodsRats030104 developmental biologyAcoustic StimulationSignal Processinglcsh:Q030217 neurology & neurosurgeryNeurosciencePloS one
researchProduct

Effect of saffron addition on the microbiological, physicochemical, antioxidant and sensory characteristics of yoghurt

2018

The impact of added saffron on the characteristics of yoghurt was evaluated during storage. The fat content was lower in the saffron yoghurt. All colour variables were significantly affected by saffron and storage. From the 15th day of storage, bacterial numbers in the saffron yoghurt were higher than those of the control yoghurt. Sensory analysis data suggested that colour, odour and texture impacted consistently on the overall acceptability of the saffron yoghurt. Saffron addition significantly increased polyphenol content and antioxidant activity, providing evidence that the enrichment of natural yoghurt with saffron yields an innovative fermented product useful for supplementing antioxi…

0301 basic medicinePolyphenolSettore AGR/19 - Zootecnica SpecialeAntioxidantmedicine.medical_treatmentved/biology.organism_classification_rank.speciesSensory systemBioengineering03 medical and health sciencesAntioxidant activitySettore BIO/10 - BiochimicaCrocus sativusmedicineFood science030109 nutrition & dieteticsChemistryved/biologyProcess Chemistry and Technology0402 animal and dairy science04 agricultural and veterinary sciencesCrocus sativu040201 dairy & animal sciencePolyphenolYoghurtFermentationCrocinFermentationFood ScienceSettore AGR/16 - Microbiologia Agraria
researchProduct

The Crystal Structure of Gurmarin, a Sweet Taste–Suppressing Protein: Identification of the Amino Acid Residues Essential for Inhibition

2018

International audience; Gurmarin is a highly specific sweet-taste suppressing protein in rodents that is isolated from the Indian plant Gymnemasylvestre. Gurmarin consists of 35 amino acid residues containing three intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.45 Å resolution and compare it with previously reported NMR solution structures. The atomic structure at this resolution allowed us to identify a very flexible region consisting of hydrophobic residues. Some of these amino acid residues had been identified as a putative binding site for the rat sweet taste receptor in a previous study. By combining alanine-scanning …

0301 basic medicineProtein ConformationPhysiologyCrystal structureCrystallography X-Ray03 medical and health sciencesBehavioral NeuroscienceGPCRsweet tastetaste receptorPhysiology (medical)goût sucréAnimalsHumansG protein-coupled receptorAmino AcidsBinding siteReceptorNuclear Magnetic Resonance BiomolecularPlant ProteinsGurmarininhibiteur030102 biochemistry & molecular biologybiologyChemistryMutagenesisCystine knotGymnema sylvestreSweet tastebiology.organism_classificationRecombinant ProteinsSensory SystemsRats3. Good healthinhibitorHEK293 Cells030104 developmental biologyBiochemistryGymnema sylvestreknottin[SDV.AEN]Life Sciences [q-bio]/Food and NutritionHydrophobic and Hydrophilic InteractionsChemical Senses
researchProduct