Search results for "Sequence Analysis"

showing 9 items of 1349 documents

Maturation of Epidermal Langerhans Cells In Vitro Is Accompanied by Downregulation of 4F2 (CD98) as Determined by Differential Display

1998

Following short-term culture, Langerhans cells mature morphologically and functionally into potent immunostimulatory cells. As regulation of gene expression accompanies this maturation process, it is likely that differentially expressed genes are involved in the maturation events. Using the recently described method of differential display, we generated cDNA expression patterns starting with mRNA of murine epidermal Langerhans cells isolated either directly (fLC) or following 3 d cultivation (cLC). Five hundred putative differentially expressed cDNA fragments were recovered from the gel. For a part of the fragments differential expression was confirmed by dot blot and Southern hybridization…

skinLangerhans cellDNA ComplementaryDown-RegulationFusion Regulatory Protein-1GrowthDermatologyBiologyBiochemistryMiceDownregulation and upregulationAntigens CDComplementary DNAmedicineAnimalsRNA MessengerCloning Moleculardifferential gene expressionGeneMolecular BiologySouthern blotRegulation of gene expressionJNK2Differential displayMice Inbred BALB Cepidermal cellsGene Expression Regulation DevelopmentalCell BiologyMolecular biologyMice Inbred C57BLmedicine.anatomical_structureGenesCell cultureLangerhans CellsAntigens SurfaceCarrier ProteinsSequence AnalysisJournal of Investigative Dermatology
researchProduct

Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.).

2014

The neotype strain Methanobacterium formicicum MFT (DSM1535), a hydrogenotrophic methanogenic Archaeon, was isolated from a domestic sewage sludge digestor in Urbana (IL, USA). Here, the complete genome sequence of the methanogen is reported. The genome is 2,478,074 bp in size, featuring a GC content of 41.23%. M. formicicum MFT encodes several genes predicted to be involved in adaptation to abiotic stress such as high osmolarity. The strain MFT is of biotechnological importance since M. formicicum strains are often found in production-scale biogas plants and it is suggested as a starter culture for the anaerobic biomethanation process. (C) 2014 Elsevier B.V. All rights reserved.

synthesisMethanogenesisMolecular Sequence DataBioengineeringMethanogenesisApplied Microbiology and BiotechnologyGenomeWaste Disposal FluidMicrobiologyGeneWhole genome sequencingStrain (chemistry)biologyInoculant cultureBase SequenceMethanobacteriumCompatible soluteGeneral MedicineSequence Analysis DNAbiology.organism_classificationBiogas productionMethanogenMethaneGC-contentSludgeGenome BacterialBiotechnologyJournal of biotechnology
researchProduct

Double copies of blaKPC-3::Tn4401a on an IncX3 plasmid in Klebsiella pneumoniae successful clone ST512 from Italy

2015

ABSTRACT A carbapenem-resistant sequence type 512 (ST512) Klebsiella pneumoniae carbapenemase 3 (KPC-3)-producing K. pneumoniae strain showing a novel variant plasmid content was isolated in Palermo, Italy, in 2014. ST512 is a worldwide successful clone associated with the spread of bla KPC genes located on the IncFIIk pKpQIL plasmid. In our ST512 strain, the bla KPC-3 gene was unusually located on an IncX3 plasmid, whose complete sequence was determined. Two copies of bla KPC-3 ::Tn 4401a caused by intramolecular transposition events were detected in the plasmid.

transposonsequence analysispolymerase chain reactionDrug ResistanceGene DosageSettore MED/42 - Igiene Generale E Applicatabacterial proteinbeta-Lactamaseopen reading framecarbapenemasePlasmidminocyclineplasmid DNAmeropenemPharmacology (medical)geneticscolistincefpodoximeceftazidime610 Medicine & healthCarbapenemBacterialpolymyxin Btimentingene expression regulationbacteriumKlebsiella pneumoniae carbapenemase 3 producing Klebsiella pneumoniae3. Good healthantiinfective agentmicrobial sensitivity testKlebsiella pneumoniaeItalypriority journaltigecyclineMultipleclone (Java method)cefotaxime030106 microbiologyKlebsiella pneumoniae carbapenemase 3tobramycinMicrobial Sensitivity Testsgentamicinpiperacillin plus tazobactamchemistryGene dosageArticleMicrobiology03 medical and health sciencesComplete sequenceClone CellOpen Reading FramesertapenemBacterial Proteinsmultidrug resistanceextensively drug resistant bacteriumAnti-Bacterial AgentcefepimePharmacologylevofloxacinmicrobiologycefoxitinbiochemical phenomena metabolism and nutritionbacterial infections and mycosesVirologyAnti-Bacterial Agents; Bacterial Proteins; Carbapenems; Clone Cells; Drug Resistance Multiple Bacterial; Gene Dosage; Italy; Klebsiella Infections; Klebsiella pneumoniae; Microbial Sensitivity Tests; Open Reading Frames; Plasmids; beta-Lactamases; DNA Transposable Elements; Gene Expression Regulation Bacterial; Pharmacology (medical); Pharmacology; Infectious Diseasesantibiotic sensitivityClone CellsKlebsiella InfectionsceftriaxoneCarbapenemsbacterial genetics0301 basic medicinemolecular cloningSettore MED/07 - Microbiologia E Microbiologia ClinicaKlebsiella pneumoniaeTransposition (music)Drug Resistance Multiple Bacterialpolycyclic compoundsgenetic screeningcell clonecarbapenem derivativeKlebsiella infectionunclassified drugAnti-Bacterial AgentsInfectious Diseasesbacterial genePlasmidsenzymologydoripenemBiologyminimum inhibitory concentrationbeta-Lactamasesbeta lactamaseMechanisms of ResistanceciprofloxacinAmikacin; aztreonam; carbapenemase; cefepime; cefotaxime; cefoxitin; cefpodoxime; ceftazidime; ceftriaxone; ciprofloxacin; colistin; cotrimoxazole; doripenem; doxycycline; ertapenem; gentamicin; imipenem; Klebsiella pneumoniae carbapenemase 3; levofloxacin; meropenem; minocycline; piperacillin plus tazobactam; plasmid DNA; polymyxin B; tigecycline; timentin; tobramycin; unclassified drug; antiinfective agent; bacterial protein; beta lactamase; carbapenem derivative; transposon antibiotic sensitivity; Article; bacterial gene; bacterial genetics; bacterial strain; bacterium; bacterium detection; bacterium isolation; Escherichia coli; extensively drug resistant bacterium; gene dosage; genetic screening; Italy; Klebsiella pneumoniae; Klebsiella pneumoniae carbapenemase 3 producing Klebsiella pneumoniae; minimum inhibitory concentration; molecular cloning; nonhuman; polymerase chain reaction; priority journal; sequence analysis; cell clone; chemistry; drug effects; enzymology; gene expression regulation; genetics; isolation and purification; Klebsiella infection; Klebsiella pneumoniae; metabolism; microbial sensitivity test; microbiology; multidrug resistance; open reading frame; plasmid; transposon Anti-Bacterial Agents; Bacterial Proteins; beta-Lactamases; Carbapenems; Clone Cells; DNA Transposable Elements; Drug Resistance Multiple Bacterial; Gene Dosage; Gene Expression Regulation Bacterial; Italy; Klebsiella Infections; Klebsiella pneumoniae; Microbial Sensitivity Tests; Open Reading Frames; Plasmidsplasmidbacterium isolationEscherichia coliGeneAmikacinbacterium detectionnonhumandoxycyclineisolation and purificationGene Expression Regulation Bacterialbiology.organism_classificationbacterial straincotrimoxazoleOpen reading frameDNA Transposable Elementdrug effectsDNA Transposable Elementsmetabolismaztreonamimipenem
researchProduct

Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli

2005

Type 1 fimbriae ofEscherichia colifacilitate attachment to the host mucosa and promote biofilm formation on abiotic surfaces. The transcriptional regulator LrhA, which is known as a repressor of flagellar, motility and chemotaxis genes, regulates biofilm formation and expression of type 1 fimbriae. Whole-genome expression profiling revealed that inactivation oflrhAresults in an increased expression of structural components of type 1 fimbriae.In vitro, LrhA bound to the promoter regions of the twofimrecombinases (FimB and FimE) that catalyse the inversion of thefimApromoter, and to the invertible element itself. TranslationallacZfusions with these genes and quantification offimEtranscript le…

urinary-tractphase variationFimbrialac operonRepressorsuicide vectorBiologyFlagellummedicine.disease_causeMicrobiologyBacterial AdhesionMicrobiologylysr homologMiceglobal regulatorh-nsEscherichia colimedicineAnimalsHumansgenetic-analysisPromoter Regions GeneticEscherichia coliEscherichia coli InfectionsOligonucleotide Array Sequence AnalysisPhase variationRegulation of gene expressionfim switchEscherichia coli ProteinsGene Expression ProfilingBiofilmGene Expression Regulation Bacterialbiochemical phenomena metabolism and nutritionintegration host factorBiofilmsFimbriae BacterialMutationUrinary Tract Infectionsvirulence determinantsTranscription Factors
researchProduct

CYGD: the Comprehensive Yeast Genome Database.

2005

The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/.; International audience; The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular network…

ved/biology.organism_classification_rank.speciesSACCHAROMYCES CEREVISIAE GENOME;COMPREHENSIVE YEAST GENOME DATABASE;CYGD;PROTEIN INTERACTION;EUROPEAN CONSORTIUM;SEQUENCE INFORMATION;YEAST GENOME;SEQUENCED EUKARYOTIC GENOMEcomputer.software_genreGenomeSaccharomycesUser-Computer InterfaceSequence Analysis ProteinDatabases GeneticYEAST GENOME[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]0303 health sciences[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]biologyDatabase030302 biochemistry & molecular biologyEUROPEAN CONSORTIUMArticlesGenomicsCYGD[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]PROTEIN INTERACTIONSEQUENCED EUKARYOTIC GENOMEnucleic acidsCOMPREHENSIVE YEAST GENOME DATABASEBio-informatiqueGenome FungalSEQUENCE INFORMATIONSaccharomyces cerevisiae ProteinsBioinformaticsSaccharomyces cerevisiae610Saccharomyces cerevisiaeGenètica molecularSACCHAROMYCES CEREVISIAE GENOMESaccharomyces03 medical and health sciencesAnnotationGeneticsSIMAPModel organismGene030304 developmental biologyBinding Sitesved/biologyMembrane ProteinsMembrane Transport Proteinsbiology.organism_classificationYeast[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]computerSDV:BIBSTranscription Factors
researchProduct

Biochemical and structural analysis of the NS5B RNA-dependent RNA polymerase of the hepatitis C virus.

2000

Hepatitis C virus (HCV), the major causative agent of chronic and sporadic non-A, non-B hepatitis worldwide, is a distinct member of the Flaviviridae virus family. These viruses have in common a plus-strand RNA genome that is replicated in the cytoplasm of the infected cell via minus-strand RNA intermediates. Owing to the lack of reliable cell culture systems and convenient animal models for HCV, the mechanisms governing RNA replication are not known. As a first step towards the development of appropriate in vitro systems, we expressed the NS5B RNA-dependent RNA polymerase (RdRp) in insect cells, purified the protein to near homogeneity and studied its biochemical properties. It is a primer…

virusesHepatitis C virusGenetic VectorsRNA-dependent RNA polymeraseHepacivirusViral Nonstructural Proteinsmedicine.disease_causeCell LineSubstrate Specificitychemistry.chemical_compoundTranscription (biology)Sequence Analysis ProteinVirologyRNA polymeraseRibavirinmedicineHumansNS5BPolymeraseHepatologybiologyRNANucleosidesDNA-Directed RNA PolymerasesRNA-Dependent RNA PolymeraseVirologyRecombinant ProteinsNS2-3 proteaseInfectious DiseaseschemistryMutationbiology.proteinRNABaculoviridaeJournal of viral hepatitis
researchProduct

Molecular Characterization of a Variant of Bacillus anthracis-Specific Phage AP50 with Improved Bacteriolytic Activity▿ †

2008

ABSTRACT The genome sequence of a Bacillus anthracis -specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages. Spontaneous AP50c-resistant B. anthracis mutants exhibit a mucoid colony phenotype.

virusesMutantMolecular Sequence DataMutation MissenseGenetics and Molecular BiologyBacillus PhagesGenome ViralViral Plaque AssayApplied Microbiology and BiotechnologySyntenyBacteriophageBacteriolysisGene OrderPoint MutationBacillus (shape)Whole genome sequencingGeneticsEcologybiologyBase SequenceTectivirusVirionSequence Analysis DNAbiology.organism_classificationBacillus anthracisOpen reading frameBacillus anthracisDNA ViralTectiviridaeFood ScienceBiotechnologyTectiviridae
researchProduct

The mitogen-activated protein kinase p38 pathway is conserved in metazoans: Cloning and activation of p38 of the SAPK2 subfamily from the sponge Sube…

2000

Our recent data suggest that during auto- and allograft recognition in sponges (Porifera), cytokines are differentially expressed. Since the mitogen-activated protein kinase (MAPK) signal transduction modulates the synthesis and release of cytokines, we intended to identify one key molecule of this pathway. Therefore, a cDNA from the marine sponge Suberites domuncula encoding the MAPK was isolated and analyzed. Its encoded protein is 366 amino acids long (calculated Mr 42 209), has a TGY dual phosphorylation motif in protein kinase subdomain VIII and displays highest overall similarity to the mammalian p38 stress activated protein kinase (SAPK2), one subfamily of MAPKs. The sponge protein w…

xHot TemperatureUltraviolet RaysMolecular Sequence DataMarine BiologyBiologyMitogen-activated protein kinase kinasep38 Mitogen-Activated Protein KinasesMAP2K7Osmotic PressureAnimalsASK1Amino Acid Sequencec-RafGenes Immediate-EarlyConserved SequencePhylogenyGene LibraryModels GeneticSequence Homology Amino AcidMAP kinase kinase kinaseCyclin-dependent kinase 2Hydrogen PeroxideCell BiologyGeneral Medicinebiology.organism_classificationPoriferaEnzyme ActivationSuberites domunculaBiochemistrybiology.proteinCyclin-dependent kinase 9Mitogen-Activated Protein KinasesSequence AnalysisSignal TransductionBiology of the Cell
researchProduct

Conservation of the positions of metazoan introns from sponges to humans

2002

Abstract Sponges (phylum Porifera) are the phylogenetic oldest Metazoa still extant. They can be considered as reference animals (Urmetazoa) for the understanding of the evolutionary processes resulting in the creation of Metazoa in general and also for the metazoan gene organization in particular. In the marine sponge Suberites domuncula , genes encoding p38 and JNK kinases contain nine and twelve introns, respectively. Eight introns in both genes share the same positions and the identical phases. One p38 intron slipped for six bases and the JNK gene has three more introns. However, the sequences of the introns are not conserved and the introns in JNK gene are generally much longer. Intron…

xMolecular Sequence Datap38 Mitogen-Activated Protein KinasesExonGene duplicationGeneticsAnimalsHumansCoding regionGroup I catalytic intronAmino Acid SequenceGeneConserved SequencePhylogenyCaenorhabditis elegansGeneticsBase SequenceSequence Homology Amino AcidbiologyCalcium-Binding ProteinsMicrofilament ProteinsJNK Mitogen-Activated Protein KinasesIntronDNASequence Analysis DNAGeneral MedicineGroup II intronbiology.organism_classificationIntronsPoriferaDNA-Binding ProteinsMitogen-Activated Protein KinasesSequence AlignmentGene
researchProduct