Search results for "Set theory"
showing 10 items of 751 documents
Rigidity of quasisymmetric mappings on self-affine carpets
2016
We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.
Morphisms of certain banach C*-modules
2000
Morphisms and representations of a class of Banach C*-modules, called CQ*algebras, are considered. Together with a general method for constructing CQ*-algebras, two different ways of extending the GNS-representation are presented.
A local notion of absolute continuity in IR^n
2005
We consider the notion of p, δ-absolute continuity for functions of several variables introduced in [2] and we investigate the validity of some basic properties that are shared by absolutely continuous functions in the sense of Maly. We introduce the class $δ−BV^p_loc(\Omega,IR^m)$ and we give a characterization of the functions belonging to this class.
A Note on Locally ??-compact Spaces
1995
: The local version of the concept of ℰτ-compactness (where ℰ is a class of Hausdorff spaces and ℰ is a cardinal) introduced by the first author as a generalization of Her-rlich's concept of ℰ-compactness (and hence, also of Mrowka's E-compactness) is defined and the corresponding theory is initiated. An essential part of the theory is developed under the additional assumption that all spaces from ℰ are absolute extensors for spaces under consideration. The theory contains as a special case the classical theory of local compactness.
Spectral Properties of Partial *-Algebras
2010
We continue our study of topological partial *algebras focusing our attention to some basic spectral properties. The special case of partial *-algebras of operators is examined first, in order to find sufficient hints for the study of the abstract case. The outcome consists in the selection of a class of topological partial *-algebras (partial GC*-algebras) that behave well from the spectral point of view and that allow, under certain conditions, a faithful realization as a partial O*-algebra.
A lower bound for the Bloch radius of 𝐾-quasiregular mappings
2004
We give a quantitative proof to Eremenko’s theorem (2000), which extends Bloch’s classical theorem to the class of n n -dimensional K K -quasiregular mappings.
Multiplications of Distributions in One Dimension and a First Application to Quantum Field Theory
2002
In a previous paper we introduced a class of multiplications of distributions in one dimension. Here we furnish different generalizations of the original definition and we discuss some applications of these procedures to the multiplication of delta functions and to quantum field theory. © 2002 Elsevier Science (USA).
Roots in the mapping class groups
2006
The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $…
Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side
2012
Abstract The main goal of this paper is to discuss the existence of periodic solutions of the second order equation: y ″ + η sgn ( y ) = α sin ( β t ) with ( η , α , β ) ∈ R 3 η > 0 . We analyze the dynamics of such an equation around the origin which is a typical singularity of non-smooth dynamical systems. The main results consist in exhibiting conditions on the existence of typical periodic solutions that appear generically in such systems. We emphasize that the mechanism employed here is applicable to many more systems. In fact this work fits into a general program for understanding the dynamics of non-autonomous differential equations with discontinuous right-hand sides.
Guaranteed error bounds and local indicators for adaptive solvers using stabilised space–time IgA approximations to parabolic problems
2019
Abstract The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Further…