Search results for "Signaling"
showing 10 items of 1125 documents
Integrated analysis of colorectal cancer microRNA datasets: Identification of microRNAs associated with tumor development
2018
Colorectal cancer (CRC) is one of the leading cause of cancer death worldwide. Currently, no effective early diagnostic biomarkers are available for colorectal carcinoma. Therefore, there is a need to discover new molecules able to identify pre-cancerous lesions. Recently, microRNAs (miRNAs) have been associated with the onset of specific pathologies, thus the identification of miRNAs associated to colorectal cancer may be used to detect this pathology at early stages. On these bases, the expression levels of miRNAs were analyzed to compare the miRNAs expression levels of colorectal cancer samples and normal tissues in several miRNA datasets. This analysis revealed a group of 19 differentia…
CXCR7 Reactivates ERK Signaling to Promote Resistance to EGFR Kinase Inhibitors in NSCLC
2019
Abstract Although EGFR mutant–selective tyrosine kinase inhibitors (TKI) are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical G protein-coupled receptor, activates the MAPK–ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance, and resulted in mesenchymal-to-epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI–resistant persister cells. Many patients with non–small cell lung cancer (NSCLC) harboring an EGFR kinase domain mutatio…
Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma
2016
Aberrant Hedgehog/GLI signaling has been implicated in a diverse spectrum of human cancers, but its role in lung adenocarcinoma (LAC) is still under debate. We show that the downstream effector of the Hedgehog pathway, GLI1, is expressed in 76% of LACs, but in roughly half of these tumors, the canonical pathway activator, Smoothened, is expressed at low levels, possibly owing to epigenetic silencing. In LAC cells including the cancer stem cell compartment, we show that GLI1 is activated noncanonically by MAPK/ERK signaling. Different mechanisms can trigger the MAPK/ERK/GLI1 cascade including KRAS mutation and stimulation of NRP2 by VEGF produced by the cancer cells themselves in an autocrin…
Autocrine CCL5 Effect Mediates Trastuzumab Resistance by ERK Pathway Activation in HER2-Positive Breast Cancer.
2020
Abstract HER2-positive breast cancer is currently managed with chemotherapy in combination with specific anti-HER2 therapies, including trastuzumab. However, a high percentage of patients with HER2-positive tumors do not respond to trastuzumab (primary resistance) or either recur (acquired resistance), mostly due to molecular alterations in the tumor that are either unknown or undetermined in clinical practice. Those alterations may cause the tumor to be refractory to treatment with trastuzumab, promoting tumor proliferation and metastasis. Using continued exposure of a HER2-positive cell line to trastuzumab, we generated a model of acquired resistance characterized by increased expression …
Uncovering the Signaling Pathway behind Extracellular Guanine-Induced Activation of NO System: New Perspectives in Memory-Related Disorders
2018
Mounting evidence suggests that the guanine-based purines stand out as key player in cell metabolism and in several models of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Guanosine (GUO) and guanine (GUA) are extracellular signaling molecules derived from the breakdown of the correspondent nucleotide, GTP, and their intracellular and extracellular levels are regulated by the fine-tuned activity of two major enzymes, purine nucleoside phosphorylase (PNP) and guanine deaminase (GDA). Noteworthy, GUO and GUA, seem to play opposite roles in the modulation of cognitive functions, such as learning and memory. Indeed GUO, despite exerting neuroprotective, anti-apoptot…
Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke
2018
Abstract Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after…
Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer
2016
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple sign…
Nuclear signaling of plant MAPKs
2018
This article is part of the research topic: Post-Translational Modifications in Plant Nuclear Signaling: Novel Insights into Responses to Environmental Changes; International audience; Mitogen-activated protein kinases (MAPKs) are conserved protein kinases in eukaryotes that establish signaling modules where MAPK kinase kinases (MAPKKKs) activate MAPK kinases (MAPKKs) which in turn activate MAPKs. In plants, they are involved in the signaling of multiple environmental stresses and developmental programs. MAPKs phosphorylate their substrates and this post-translational modification (PTM) contributes to the regulation of proteins. PTMs may indeed modify the activity, subcellular localization,…
Cellular complexity in MAPK signaling in plants: Questions and emerging tools to answer them
2018
International audience; Mitogen activated protein kinase (MAPK) cascades play an important role in many aspects of plant growth, development, and environmental response. Because of their central role in many important processes, MAPKs have been extensively studied using biochemical and genetic approaches. This work has allowed for the identification of the MAPK genes and proteins involved in a number of different signaling pathways. Less well developed, however, is our understanding of how MAPK cascades and their corresponding signaling pathways are organized at subcellular levels. In this review, we will provide an overview of plant MAPK signaling, including a discussion of what is known a…
NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice.
2018
See Contreras and Hippenmeyer (doi:10.1093/brain/awy218) for a scientific commentary on this article. Autism spectrum disorders (ASDs) are complex conditions with diverse aetiologies. Szczurkowska et al. demonstrate that two ASD-related molecules – FGFR2 and Negr1 – physically interact to act on the same downstream pathway, and regulate cortical development and ASD-relevant behaviours in mice. Identifying common mechanisms in ASDs may reveal targets for pharmacological intervention.