Search results for "Signaling"

showing 10 items of 1125 documents

PTTG1-interacting protein (PTTG1IP/PBF) predicts breast cancer survival.

2017

Background: PTTG1-interacting protein (PTTG1IP) is an oncogenic protein, which participates in metaphase-anaphase transition of the cell cycle through activation of securin (PTTG1). PTTG1IP promotes the shift of securin from the cell cytoplasm to the nucleus, allowing the interaction between separase and securin. PTTG1IP overexpression has been previously observed in malignant disease, e.g. in breast carcinoma. However, the prognostic value of PTTG1IP in breast carcinoma patients has not previously been revealed. Methods: A total of 497 breast carcinoma patients with up to 22-year follow-up were analysed for PTTG1IP and securin immunoexpression. The results were evaluated for correlations w…

0301 basic medicineOncologyCancer ResearchTriple Negative Breast NeoplasmsKaplan-Meier EstimatePBF0302 clinical medicineBreast cancerSurgical oncologyRisk FactorsAged 80 and overrintasyöpäPTTG1 interacting proteinIntracellular Signaling Peptides and ProteinsCell cycleMiddle Agedlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPrognosisImmunohistochemistrySecurinsyöpägeenitOncologySecurin030220 oncology & carcinogenesisImmunohistochemistryFemaleSeparaseBreast carcinomaResearch ArticleAdultmedicine.medical_specialtyPTTG1IPBreast Neoplasmslcsh:RC254-282immunohistokemia03 medical and health sciencesBreast cancerInternal medicineGeneticsmedicineBiomarkers TumorHumansAgedbusiness.industryMembrane Proteinsmedicine.disease030104 developmental biologyMultivariate AnalysisCancer researchprognosisproteiinitbusinessBMC cancer
researchProduct

Lipidomics reveals altered biosynthetic pathways of glycerophospholipids and cell signaling as biomarkers of the polycystic ovary syndrome

2017

// Mariona Jove 1, * , Irene Pradas 1, * , Alba Naudi 1, * , Susana Rovira-Llopis 2 , Celia Banuls 2 , Milagros Rocha 2 , Manuel Portero-Otin 1 , Antonio Hernandez-Mijares 2, 3, 4, # , Victor M. Victor 2, 5, # and Reinald Pamplona 1, # 1 Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain 2 Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Service of Endocrinology, University Hospital Dr. Peset, 46017 Valencia, Spain 3 Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia University, 46010 Valencia, Spain 4 Department of Medicine, …

0301 basic medicineOncologyCell signaling moleculesmedicine.medical_specialtyCell signalingGlycerophospholipidsDiseaseGlycerophospholipidsFree fatty acidsValencian community03 medical and health sciences0302 clinical medicineInternal medicineLipidomicsmedicinelipid de novo biosynthesisglycerophospholipids030219 obstetrics & reproductive medicinebusiness.industryfree fatty acidsLipidomeUniversity hospitalPolycystic ovary030104 developmental biologyOncologyLipidomicscell signaling moleculeslipidomicsbusinessResearch PaperOncotarget
researchProduct

A study of PD-L1 expression in KRAS mutant non-small cell lung cancer cell lines exposed to relevant targeted treatments.

2017

We investigated PD-L1 changes in response to MEK and AKT inhibitors in KRAS mutant lung adenocarcinoma (adeno-NSCLC). PD-L1 expression was quantified using immunofluorescence and co-culture with a jurkat cell-line transfected with NFAT-luciferase was used to study if changes in PD-L1 expression in cancer cell lines were functionally relevant. Five KRAS mutant cell lines with high PD-L1 expression (H441, H2291, H23, H2030 and A549) were exposed to GI50 inhibitor concentrations of a MEK inhibitor (trametinib) and an AKT inhibitor (AZD5363) for 3 weeks. Only 3/5 (H23, H2030 and A549) and 2/5 cell lines (H441 and H23) showed functionally significant increases in PD-L1 expression when exposed to…

0301 basic medicineOncologyCell signalingLung NeoplasmsLuminescenceImmunofluorescenceMutantCancer Treatmentlcsh:MedicineSignal transductionERK signaling cascademedicine.disease_causeJurkat cellsB7-H1 AntigenLung and Intrathoracic TumorsMajor Histocompatibility ComplexWhite Blood Cells0302 clinical medicineAnimal CellsCarcinoma Non-Small-Cell LungMedicine and Health Scienceslcsh:ScienceTrametinibMultidisciplinarymedicine.diagnostic_testT CellsChemistryPhysicsElectromagnetic RadiationMEK inhibitorSignaling cascadesOncology030220 oncology & carcinogenesisPhysical SciencesKRASCellular TypesResearch Articlemedicine.medical_specialtyGeneral Science & TechnologyImmune CellsImmunologyResearch and Analysis MethodsImmunofluorescenceFluorescence03 medical and health sciencesCell Line TumorInternal medicineMD MultidisciplinarymedicineHumansImmunoassaysBlood Cellslcsh:RCancers and NeoplasmsBiology and Life SciencesCell BiologyCoculture TechniquesNon-Small Cell Lung Cancerrespiratory tract diseasesGenes ras030104 developmental biologyCell cultureMutationImmunologic TechniquesCancer researchClinical ImmunologyCancer biomarkerslcsh:QClinical MedicinePLoS ONE
researchProduct

Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells.

2017

// James A. McCubrey 1 , Timothy L. Fitzgerald 2 , Li V. Yang 3 , Kvin Lertpiriyapong 4 , Linda S. Steelman 1 , Stephen L. Abrams 1 , Giuseppe Montalto 5,6 , Melchiorre Cervello 6 , Luca M. Neri 7 , Lucio Cocco 8 , Alberto M. Martelli 8 , Piotr Laidler 9 , Joanna Dulinska-Litewka 9 , Dariusz Rakus 10 , Agnieszka Gizak 10 , Ferdinando Nicoletti 11 , Luca Falzone 11 , Saverio Candido 11 and Massimo Libra 11 1 Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA 2 Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA 3 Department of Internal Medicine, Hematology/Oncology Section, Brody Sc…

0301 basic medicineOncologyGerontologycancer stem cellsmedicine.medical_specialtyEpithelial-Mesenchymal TransitionReviewPI3KNO03 medical and health sciencesGlycogen Synthase Kinase 30302 clinical medicineCancer stem cellGSK-3Internal medicinemicroRNAmedicineAnimalsHumansPTENEpithelial–mesenchymal transitionProtein kinase BPI3K/AKT/mTOR pathwayGSK-3biologybusiness.industryAnimalCancer stem cellAktWnt signaling pathwayWnt/beta-cateninMicroRNAMicroRNAsGSK-3 cancer stem cells Wnt/beta-catenin PI3K Akt030104 developmental biologyOncology030220 oncology & carcinogenesisNeoplastic Stem Cellsbiology.proteinNeoplastic Stem CellAkt; GSK-3; PI3K; Wnt/beta-catenin; cancer stem cellsbusinessHumanSignal Transduction
researchProduct

Impact of Donor Activating KIR Genes on HSCT Outcome in C1-Ligand Negative Myeloid Disease Patients Transplanted with Unrelated Donors-A Retrospectiv…

2017

Natural Killer cells (NK) are lymphocytes with the potential to recognize and lyse cells which escaped T-cell mediated lysis due to their aberrant HLA expression profiles. Killer cell immunoglobulin-like receptors (KIR) influence NK-cell activity by mediation of activating or inhibitory signals upon interaction with HLA-C (C1, C2) ligands. Therefore, absence of ligands for donor inhibitory KIRs following hematopoietic stem cell transplantation (HSCT) may have an influence on its outcome. Previous studies showed that C1 negative patients have a decreased HSCT outcome. Our study, based on a cohort of 200 C1-negative patients, confirmed these findings for the endpoints: overall survival (OS: H…

0301 basic medicineOncologyMaleMyeloidCell Transplantationmedicine.medical_treatmentlcsh:MedicineHematopoietic stem cell transplantationNK cellsLigandsCohort StudiesWhite Blood Cells0302 clinical medicineMathematical and Statistical TechniquesReceptors KIRCell SignalingComplement C1Animal CellsMedicine and Health SciencesBlood and Lymphatic System ProceduresMembrane Receptor SignalingReceptorlcsh:ScienceBone Marrow TransplantationMultidisciplinaryT CellsIncidence (epidemiology)Hematopoietic Stem Cell TransplantationMiddle AgedImmune Receptor Signaling3. Good healthKiller Cells Naturalmedicine.anatomical_structureTreatment OutcomeHematologic NeoplasmsCohortPhysical SciencesFemaleCellular TypesUnrelated DonorsStatistics (Mathematics)Research ArticleSignal TransductionAdultmedicine.medical_specialtyAdolescentImmune CellsImmunologySurgical and Invasive Medical ProceduresResearch and Analysis Methods03 medical and health sciencesYoung AdultInternal medicinemedicineConfidence IntervalsHumansClinical significanceddc:610Statistical MethodsAgedRetrospective StudiesTransplantationBlood Cellsbusiness.industrylcsh:RBiology and Life SciencesRetrospective cohort studyCell BiologyMultivariate analysis; Stem cell transplantation; T cells; Bone marrow transplantation; NK cells; Hematopoietic stem cell transplantation; Immune receptor signalingTransplantation030104 developmental biologyImmunologyMultivariate Analysislcsh:QbusinessMathematics030215 immunologyStem Cell TransplantationPLoS ONE
researchProduct

Innovative therapy, monoclonal antibodies, and beyond: Highlights from the eighth annual meeting

2018

The eighth annual conference of “Innovative therapy, monoclonal antibodies, and beyond” was held in Milan on Jan. 26, 2018, and hosted by Fondazione IRCCS–Istituto Nazionale dei Tumori (Fondazione IRCCS INT). The conference was divided into two main scientific sessions, of i) pre-clinical assays and novel biotargets, and ii) clinical translation, as well as a third session of presentations from young investigators, which focused on recent achievements within Fondazione IRCCS INT on immunotherapy and targeted therapies. Presentations in the first session addressed the issue of cancer immunotherapy activity with respect to tumor heterogeneity, with key topics addressing: 1) tumor heterogeneit…

0301 basic medicineOncologyTumor heterogeneitymedicine.medical_specialtymedicine.drug_classEndocrinology Diabetes and Metabolismmedicine.medical_treatmentImmunologyMonoclonal antibodyGeneral Biochemistry Genetics and Molecular BiologyTargeted therapyTargeted therapy03 medical and health sciences0302 clinical medicineImmune systemCancer immunotherapyInternal medicineImmunology and AllergyMedicineAnimalbusiness.industryMicrobiotaRepertoireMelanomaImmune checkpoints inhibitionAntibodies MonoclonalImmunotherapymedicine.diseaseCancer metabolismGastrointestinal MicrobiomeRadiation therapy030104 developmental biologyCancer stemness signaling030220 oncology & carcinogenesisNeoplasmImmunotherapybusinessHumanCytokine & Growth Factor Reviews
researchProduct

Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation

2017

MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR- 29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b…

0301 basic medicineOncologycancer stem cellsCarcinogenesisCell Cycle ProteinsTriple Negative Breast NeoplasmsMicroRNA 29b0302 clinical medicineCell MovementSettore BIO/10 - BiochimicaCancer stem cells; MiR-29b-1; SPIN1; Triple-negative breast cancer; Wnt/β-catenin and Akt signaling pathwaysMedicineBreastBreast -- CancerTriple-negative breast cancerWnt signaling pathwayMicroRNANanog Homeobox ProteinGene Expression Regulation NeoplasticOncologyWnt/β-catenin and Akt signaling pathway030220 oncology & carcinogenesisMiR-29b-1Wnt/β-catenin and Akt signaling pathwaysNeoplastic Stem Cellstriple-negative breast cancerFemaleMicrotubule-Associated ProteinsSignal TransductionResearch Papermedicine.medical_specialtycancer stem cellPaclitaxelDown-Regulation03 medical and health sciencesBreast cancerSOX2Cancer stem cellInternal medicineCell Line TumormicroRNAHumansNeoplasm InvasivenessCell ProliferationSPIN1business.industrySOXB1 Transcription Factorsmedicine.diseasePhosphoproteinsMolecular medicineAntineoplastic Agents PhytogenicMicroRNAs030104 developmental biologyDrug Resistance NeoplasmbusinessOctamer Transcription Factor-3
researchProduct

Role of the HIPPO pathway as potential key player in the cross talk between oncology and cardiology.

2021

The HIPPO pathway (HP) is a highly conserved kinase cascade that affects organ size by regulating proliferation, cell survival and differentiation. Discovered in Drosophila melanogaster to early 2000, it immediately opened wide frontiers in the field of research. Over the last years the field of knowledge on HP is quickly expanding and it is thought will offer many answers on complex pathologies. Here, we summarized the results of several studies that have investigated HP signaling both in oncology than in cardiology field, with an overview on future perspectives in cardiology research.

0301 basic medicineOncologymedicine.medical_specialtyCardiologyProtein Serine-Threonine KinasesCardiac regeneration03 medical and health sciences0302 clinical medicineInternal medicinemedicineAnimalsHumansHippo Signaling PathwayCardio oncologyCell survivalCell ProliferationHippo signaling pathwaybiologybusiness.industryHematologybiology.organism_classificationKinase cascade030104 developmental biologyDrosophila melanogasterOncologyCardiology fieldAnimals Cardiac development Cardiac regeneration Cardio-oncology Cardiology Cell Proliferation Drosophila melanogaster HIPPO signaling pathway Humans Protein Serine-Threonine Kinases030220 oncology & carcinogenesisCardiologyDrosophila melanogasterbusinessSignal TransductionCritical reviews in oncology/hematology
researchProduct

How to make a tongue: Cellular and molecular regulation of muscle and connective tissue formation during mammalian tongue development

2018

IF 6.614 (2016); International audience; The vertebrate tongue is a complex muscular organ situated in the oral cavity and involved in multiple functions including mastication, taste sensation, articulation and the maintenance of oral health. Although the gross embryological contributions to tongue formation have been known for many years, it is only relatively recently that the molecular pathways regulating these processes have begun to be discovered. In particular, there is now evidence that the Hedgehog, TGF-Beta, Wnt and Notch signaling pathways all play an important role in mediating appropriate signaling interactions between the epithelial, cranial neural crest and mesodermal cell pop…

0301 basic medicineOrganogenesisHedgehog signaling[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyBifid tongueMesodermWnt03 medical and health sciences0302 clinical medicineCranial neural crestTongueTongueMacroglossiamedicineAnimalsHumansTGF-betaHedgehogMammalsAglossiaMusclesMyogenesisGene Expression Regulation DevelopmentalCell BiologyAnatomymedicine.disease030104 developmental biologymedicine.anatomical_structureCranial neural crestConnective TissueNeural CrestEmbryologyGross anatomymedicine.symptom030217 neurology & neurosurgerySignal TransductionDevelopmental BiologySeminars in Cell & Developmental Biology
researchProduct

Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ

2021

Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity. We show that the transcriptional coactivators YAP/TAZ act as key regulators of the conserved CRC gained enhancers. The same YAP/TAZ-bound enhancers display active chromatin profiles across diverse human t…

0301 basic medicineOrganoidEpigenomicsTranscription FactorGeneral Physics and AstronomyColorectal NeoplasmAdaptor Proteins Signal Transducing; Colorectal Neoplasms; Gene Expression Regulation Neoplastic; Histone Code; Humans; Models Genetic; Organoids; RNA-Seq; Single-Cell Analysis; Trans-Activators; Transcription Factors; Tumor Cells Cultured; Enhancer Elements Genetic; Epigenesis GeneticEpigenesis Genetic0302 clinical medicineModelsAdaptor Proteins Signal Transducing Colorectal Neoplasms Gene Expression Regulation NeoplasticHistone Code Humans Models Genetic Organoids RNA-Seq Single-Cell Analysis Trans-Activators Transcription Factors Tumor Cells Cultured Enhancer Elements Genetic Epigenesis GeneticTumor Cells CulturedCancer genomicsHistone codeRNA-SeqEpigenomicsAdaptor Proteins Signal Transducing; Colorectal Neoplasms; Gene Expression Regulation Neoplastic; Histone Code; Humans; Models Genetic; Organoids; RNA-Seq; Single-Cell Analysis; Trans-Activators; Transcription Factors; Transcriptional Coactivator with PDZ-Binding Motif Proteins; Tumor Cells Cultured; YAP-Signaling Proteins; Enhancer Elements Genetic; Epigenesis GeneticMultidisciplinaryCulturedQAdaptor Proteins3. Good healthChromatinTumor CellsGene Expression Regulation NeoplasticHistone CodeOrganoidsSingle-Cell AnalysiEnhancer Elements GeneticTrans-Activator030220 oncology & carcinogenesisSingle-Cell AnalysisColorectal NeoplasmsHumanEnhancer ElementsScienceTumour heterogeneityBiologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesGeneticmedicineHumansEpigeneticsEnhancerTranscription factorAdaptor Proteins Signal TransducingNeoplasticModels GeneticSignal TransducingCancerYAP-Signaling ProteinsGeneral Chemistrymedicine.diseaseColorectal cancerdigestive system diseases030104 developmental biologyGene Expression RegulationTranscriptional Coactivator with PDZ-Binding Motif ProteinsCancer cellCancer researchTrans-ActivatorsEpigenesisTranscription Factors
researchProduct