Search results for "Silver nanoparticle"

showing 10 items of 120 documents

Ag nanoparticles agargel nanocomposites for SERS detection of cultural heritage interest pigments

2018

Agarose gel (agargel) composites with commercial and laboratory made silver nanoparticles were prepared by a wet solution method at room temperature. The gel composites were used for pigment extraction and detection by Raman spectroscopy. Red (alizarin) and violet (crystal violet) pigments deposited on paper were extracted by the composites and were investigated by micro-Raman spectroscopy. Evaluation was carried out of the surface-enhanced Raman spectroscopy (SERS) effect induced by the silver nanoparticles embedded in the gel. A kinetic approach as a function of time was used to determine the efficiency of pigments extraction by composites deposition. A non-invasive extraction process of …

Materials scienceNanocompositeExtraction (chemistry)General Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyAlizarin01 natural sciencessers cultural heritage raman spectroscopySilver nanoparticle0104 chemical scienceschemistry.chemical_compoundsymbols.namesakechemistrySurface Enhanced Raman Spectroscopy Cultural Heritage pigmentssymbolsAgarosesense organsCrystal violet0210 nano-technologyRaman spectroscopySpectroscopyNuclear chemistryThe European Physical Journal Plus
researchProduct

NMR-investigation of the mechanism of silver mercaptide thermolysis in amorphous polystyrene

2007

Polymer-embedded silver clusters have been prepared by thermal decomposition of silver dodecylmercaptide previously dissolved in amorphous polystyrene. The morphology and structure of silver clusters have been determined by transmission electron microscopy (TEM) and large angle X-ray diffractometry (XRD), respectively. The mechanism involved in the thermolysis reaction was elucidated by different NMR techniques. The thermolysis produced thiol-derivatized silver clusters (i.e., silver clusters coated with a self-organized thiol monolayer, Agx(SC12H25)y) and had the effect of increasing the branching degree of polystyrene due to enhanced cross-linking.

Materials scienceNanocompositekinetic mechanismSettore AGR/13 - Chimica AgrariaThermal decompositionHomoleptic mercaptidesMineralogyGeneral ChemistryPhotochemistrySilver nanoparticleNMRAmorphous solidchemistry.chemical_compoundTransition metalchemistryTransmission electron microscopyMonolayernanocompositesMaterials ChemistrynanoparticlesPolystyrene
researchProduct

Quantitative analysis of localized surface plasmons based on molecular probing

2010

International audience; We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor. A single nanoparticle spectral signature was also assessed. This quantitative characterization constitutes a prerequisite for developing nanophotonic applications.

Materials scienceNanophotonicsGeneral Physics and AstronomyNanoparticlePhysics::OpticsNanotechnologynanoscale photopolymerization02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticlenear-field opticsGeneral Materials Sciencemolecular probesPlasmonComputingMilieux_MISCELLANEOUSSpectral signaturelocalized surface plasmonquantitative analysisNear-field opticsGeneral Engineering[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymers[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyLocalized surface plasmon
researchProduct

SERS activity of photoreduced silver chloride crystals

2019

Metal nanoparticles are widely acclaimed as plasmonic substrates for surface -enhanced Raman spectroscopy (SERS) due to their unique particle plasmon resonances at visible and near infrared regions. Silver nanoparticles are typically employed in SERS when the targeted Raman signature zone of analytes lies at ultra-violet and/or blue to green spectral regimes. Even though silver has strong plasmonic properties, silver-based substrates are often affected by the atmospheric oxidation and show degradation in their SERS performance. One way to overcome this limitation is to use silver chloride crystals as oxidation resistant intermediate and photoreduce them to 'fresh' silver just before SERS an…

Materials scienceNear-infrared spectroscopyspektroskopiaPhotochemistrySilver nanoparticletiiviin aineen fysiikkaRhodamine 6Gplasmonitsymbols.namesakechemistry.chemical_compoundSilver chloridecondensed matter physicschemistryENHANCED RAMAN-SPECTROSCOPYsymbolsDegradation (geology)ParticlenanohiukkasetRaman spectroscopyPlasmon
researchProduct

Matching emission centers of electrons and photons in current-carrying silver nanoparticle films

2019

Current flow through a nanoparticle film (two-dimensional ensemble of small tunnel-coupled metal particles on a dielectric substrate) is accompanied by electron and photon emission. It has a localized character (originates from emission centers). With an increase in applied voltage, the number of emission centers increases, and with further increase, some of them may burn out. In dark conditions, photon emission centers are visible with a bare eye. To visualize electron emission centers, emission electron microscopy is used. The conducted measurements allow comparison of the number and relative positions of electron and photon emission centers. It is shown that electrons and photons are emi…

Materials sciencePhotonAstrophysics::High Energy Astrophysical PhenomenaPhysics::OpticsNanoparticleAstrophysics::Cosmology and Extragalactic AstrophysicsElectron01 natural sciencesSilver nanoparticlelaw.invention010309 opticsMetalOpticslaw0103 physical sciencesElectrical and Electronic EngineeringEngineering (miscellaneous)Astrophysics::Galaxy Astrophysicsbusiness.industryAtomic and Molecular Physics and OpticsPhoton countingLight intensityvisual_artvisual_art.visual_art_mediumElectron microscopeAtomic physicsbusinessApplied Optics
researchProduct

Direct hot-carrier transfer in plasmonic catalysis

2019

Plasmonic metal nanoparticles can concentrate optical energy and enhance chemical reactions on their surfaces. Plasmons can interact with adsorbate orbitals and decay by directly exciting a carrier from the metal to the adsorbate in a process termed the direct-transfer process. Although this process could be useful for enhancing the efficiency of a chemical reaction, it remains poorly understood. Here, we report a preliminary investigation employing time-dependent density-functional theory (TDDFT) calculations to capture this process at a model metal-adsorbate interface formed by a silver nanoparticle (Ag147) and a carbon monoxide molecule (CO). Direct hot-electron transfer is observed to o…

Materials sciencePhysics::Optics02 engineering and technologyTime-dependent density functional theory010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesChemical reactionSilver nanoparticle0104 chemical sciencesCatalysisCondensed Matter::Materials ScienceAdsorptionChemical physicsMoleculeMolecular orbitalPhysics::Chemical PhysicsPhysical and Theoretical Chemistry0210 nano-technologyPlasmonFaraday Discussions
researchProduct

Preparation of graphene nanocomposites from aqueous silver nitrate using graphene oxide’s peroxidase-like and carbocatalytic properties

2020

AbstractThe present study evaluates the role of graphene oxide’s (GO’s) peroxidase-like and inherent/carbocatalytic properties in oxidising silver nitrate (AgNO3) to create graphene nanocomposites with silver nanoparticles (GO/Ag nanocomposite). Activation of peroxidase-like catalytic function of GO required hydrogen peroxide (H2O2) and ammonia (NH3) in pH 4.0 disodium hydrogen phosphate (Na2HPO4). Carbocatalytic abilities of GO were triggered in pH 4.0 deionised distilled water (ddH2O). Transmission electron microscope (TEM), scanning electron microscope (SEM), cyclic voltammetry (CV) and UV-Vis spectroscopy aided in qualitatively and quantitatively assessing GO/Ag nanocomposites. TEM and …

Materials scienceScanning electron microscopeOxidelcsh:Medicine02 engineering and technology010402 general chemistry01 natural sciencesArticleCatalysisSilver nanoparticlelaw.inventionCatalysischemistry.chemical_compoundnanorakenteetlawgrafeeniChemical synthesislcsh:ScienceMultidisciplinaryNanocompositeGraphenelcsh:Rgrafeenioksidi021001 nanoscience & nanotechnology0104 chemical sciencesSilver nitratechemistryChemical engineeringkatalyysilcsh:QGrapheneCyclic voltammetry0210 nano-technology
researchProduct

The Antimicrobial Action of Silver Halides in Calcium Phosphate

2014

Silver halides represent a yet unexplored avenue for imparting antimicrobial activity to calcium phosphates. Negtively charged silver halide colloids (AgI, AgBr and AgCl) were added to synthesized amorphous calcium phosphate. Concurrent melting of silver halides and crystallization to carbonated apatite at 700 oC increased the silver halide surface area available to bacteria and formed a lower solubility apatite. The effect of the matrix solubility on antimicrobial response could then be investigated. Pseudomonas aeruginosa was more sensitive to silver iodide and silver bromide than Staphylococcus aureus. Silver iodide demonstrated greater activity than silver bromide. Silver chloride did n…

Materials scienceSilver halidesilver halidesMechanical EngineeringInorganic chemistrySilver iodidechemistry.chemical_elementHalideCalciumSilver bromideSilver nanoparticlechemistry.chemical_compoundSilver chlorideamorphous calcium phosphateschemistryMechanics of MaterialsapatiteantimicrobialGeneral Materials ScienceAmorphous calcium phosphatebacteriaKey Engineering Materials
researchProduct

Molecular-mediated assembly of silver nanoparticles with controlled interparticle spacing and chain length

2012

In the present work, we report on a one-pot method for the assembly of noble metal nanoparticles with tunable optical properties, assembly length and interparticle spacing. The synthetic colloidal route is based on the covalent binding among OH-terminated silver nanoparticles by means of dicarboxylic acids with a defined molecular length. As a result, the initially symmetric plasmon band of silver nanoparticles splits into two plasmonic modes when nanoparticles are assembled due to the strong near-field plasmon coupling. We noticed a very good correlation between the plasmon wavelength shift and the interparticle spacing that is represented by the universal scaling law of the surface plasmo…

Materials scienceSurface plasmonPhysics::OpticsNanoparticleNanotechnologyGeneral Chemistryengineering.materialSilver nanoparticlePolarizabilityChemical physicsPhysics::Atomic and Molecular ClustersMaterials ChemistryengineeringNoble metalSurface plasmon resonancePlasmonLocalized surface plasmonJournal of Materials Chemistry
researchProduct

Highly Sensitive plasmonic silver nanorods

2011

We compare the single-particle plasmonic sensitivity of silver and gold nanorods with similar resonance wavelengths by monitoring the plasmon resonance shift upon changing the environment from water to 12.5% sucrose solution. We find that silver nanoparticles have 1.2 to 2 times higher sensitivity than gold, in good agreement with simulations based on the boundary-elements-method (BEM). To exclude the effect of particle volume on sensitivity, we test gold rods with increasing particle width at a given resonance wavelength. Using the Drude-model of optical properties of metals together with the quasi-static approximation (QSA) for localized surface plasmons, we show that the dominant contrib…

Materials sciencebusiness.industryGeneral EngineeringAnalytical chemistryPhysics::OpticsGeneral Physics and AstronomyResonance02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSilver nanoparticle0104 chemical sciencesWavelengthPhysics::Atomic and Molecular ClustersOptoelectronicsParticleGeneral Materials ScienceNanorodsense organsSurface plasmon resonance0210 nano-technologybusinessPlasmonLocalized surface plasmonACS Nano
researchProduct