Search results for "Singular solution"
showing 10 items of 22 documents
Regularity of the solution to a class of weakly singular fredholm integral equations of the second kind
1979
Continuity and differentiability properties of the solution to a class of Fredholm integral equations of the second kind with weakly singular kernel are derived. The equations studied in this paper arise from e.g. potential problems or problems of radiative equilibrium. Under reasonable assumptions it is proved that the solution possesses continuous derivatives in the interior of the interval of integration but may have mild singularities at the end-points.
Singular solutions to a quasilinear ODE
2005
In this paper, we prove the existence of infinitely many radial solutions having a singular behaviour at the origin for a superlinear problem of the form $-\Delta_pu=|u|^{\delta-1}u$ in $B(0,1)\setminus\{0\}\subset\mathbb R^N$,\, $u=0$ for $|x|=1$, where $N>p>1$ and $\delta>p-1$. Solutions are characterized by their nodal properties. The case $\delta+1 <\frac{Np}{N-p}$ is treated. The study of the singularity is based on some energy considerations and takes into account the classification of the behaviour of the possible solutions available in the literature. By following a shooting approach, we are able to deduce the main multiplicity result from some estimates on the rotation numbers asso…
On Weakly Singular Integral Equations of the Second Kind
1988
Local behaviour of singular solutions for nonlinear elliptic equations in divergence form
2012
We consider the following class of nonlinear elliptic equations $$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$ where q > 1 and $${\mathcal{A}}$$ is a positive C 1(0,1] function which is regularly varying at zero with index $${\vartheta}$$ in (2−N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if $${\Phi\not\in L^q(B_1(0))}$$ , where $${\Phi}$$ denotes the fundamental solution of $${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$$ in $${\mathcal D'(B_1(0))}$$ and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of al…
Singular solutions to p-Laplacian type equations
1999
We construct singular solutions to equations $div\mathcal{A}(x,\nabla u) = 0,$ similar to the p-Laplacian, that tend to ∞ on a given closed set of p-capacity zero. Moreover, we show that every Gδ-set of vanishing p-capacity is the infinity set of some A-superharmonic function.
Regular and singular pulse and front solutions and possible isochronous behavior in the Extended-Reduced Ostrovsky Equation: Phase-plane, multi-infin…
2016
In this paper we employ three recent analytical approaches to investigate several classes of traveling wave solutions of the so-called extended-reduced Ostrovsky Equation (exROE). A recent extension of phase-plane analysis is first employed to show the existence of breaking kink wave solutions and smooth periodic wave (compacton) solutions. Next, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic orbits of the traveling-wave equations for the exROE equation. These correspond to pulse solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddl…
Existence and comparison results for a singular semilinear elliptic equation with a lower order term
2014
This paper deals with the homogeneous Dirichlet problem for a singular semilinear elliptic equation with a first order term. When the datum is bounded we prove an existence result and we show that any solution can be compared with the solution to a suitable symmetrized problem.
Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and …
2014
In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively o…
Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic equations
2015
In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth \[ \begin{cases} -\Delta_{p}u-{\displaystyle \frac{\mu}{|x|^{p}}|u|^{p-2}u}{\displaystyle =\frac{|u|^{\frac{(N-s)p}{N-p}-2}u}{|x|^{s}}}+\lambda|u|^{p-2}u & \text{in }B,\\ u=0 & \text{on }\partial B, \end{cases} \] where $B$ is an open finite ball in $\mathbb{R}^{N}$ centered at the origin, $1<p<N$, $-\infty<\mu<((N-p)/p)^{p}$, $0\le s<p$ and $\lambda\in\mathbb{R}$. A related limiting problem is also considered.
Analysis of singular bilinear systems using Walsh functions
1991
The use of Walsh functions to analyse singular bilinear systems is investigated. It is shown that the nonlinear implicit differential system equation may be converted to a set of linear algebraic Lyapunov equations to be solved iteratively for the coefficients of the semistate x(t) in terms of the Walsh basis functions. Solution of the iterative algorithm is uniformly convergent to the exact solution of the algebraic generalised Lyapunov equation of the singular bilinear system. The present method is slightly more complicated than a similar one arising from the analysis of linear singular systems. In fact, it is a hybrid between the analyses of usual linear singular and bilinear regular sys…