Search results for "Singularity"
showing 10 items of 352 documents
p −1-Linear Maps in Algebra and Geometry
2012
At least since Habousch’s proof of Kempf’s vanishing theorem, Frobenius splitting techniques have played a crucial role in geometric representation theory and algebraic geometry over a field of positive characteristic. In this article we survey some recent developments which grew out of the confluence of Frobenius splitting techniques and tight closure theory and which provide a framework for higher dimension geometry in positive characteristic. We focus on local properties, i.e. singularities, test ideals, and local cohomology on the one hand and global geometric applicatioms to vanishing theorems and lifting of sections on the other.
Adjacency matrices of random digraphs: singularity and anti-concentration
2017
Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let $J$ be a subset of vertices of $G$ with $|J|\approx n/d$. Let $\delta_i$ be the indicator of the event that the vertex $i$ is connected to $J$ and define $\delta = (\delta_1, …
A singular elliptic equation and a related functional
2021
We study a class of Dirichlet boundary value problems whose prototype is [see formula in PDF] where 0 < p < 1 and f belongs to a suitable Lebesgue space. The main features of this problem are the presence of a singular term |u|p−2u and a datum f which possibly changes its sign. We introduce a notion of solution in this singular setting and we prove an existence result for such a solution. The motivation of our notion of solution to problem above is due to a minimization problem for a non–differentiable functional on [see formula in PDF] whose formal Euler–Lagrange equation is an equation of that type. For nonnegative solutions a uniqueness result is obtained.
Sustainable growth and environmental catastrophes
2017
Abstract In the standard AK growth model we introduce the threat of an ecological catastrophe and study the consequences for the economic variables in the long-run. We extend the basic framework by considering two environmental externalities: the first one is local and gives account of the marginal damage from emissions flow; the second one is aggregate, or global, and relates to the extreme damage which may happen if the accumulated stock of pollutants is on the threshold of a worldwide catastrophe. In this context dominated by market failures, we focus on the socially optimal solution and the search of conditions for sustainability. We identify the efficient balanced growth path, which ma…
Infinitesimal deformations of double covers of smooth algebraic varieties
2003
The goal of this paper is to give a method to compute the space of infinitesimal deformations of a double cover of a smooth algebraic variety. The space of all infinitesimal deformations has a representation as a direct sum of two subspaces. One is isomorphic to the space of simultaneous deformations of the branch locus and the base of the double covering. The second summand is the subspace of deformations of the double covering which induce trivial deformations of the branch divisor. The main result of the paper is a description of the effect of imposing singularities in the branch locus. As a special case we study deformations of Calabi--Yau threefolds which are non--singular models of do…
Alien limit cycles near a Hamiltonian 2-saddle cycle
2005
Abstract It is known that perturbations from a Hamiltonian 2-saddle cycle Γ can produce limit cycles that are not covered by the Abelian integral, even when it is generic. These limit cycles are called alien limit cycles. This phenomenon cannot appear in the case that Γ is a periodic orbit, a non-degenerate singularity, or a saddle loop. In this Note, we present a way to study this phenomenon in a particular unfolding of a Hamiltonian 2-saddle cycle, keeping one connection unbroken at the bifurcation. To cite this article: M. Caubergh et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).
Regularity of the solution to a class of weakly singular fredholm integral equations of the second kind
1979
Continuity and differentiability properties of the solution to a class of Fredholm integral equations of the second kind with weakly singular kernel are derived. The equations studied in this paper arise from e.g. potential problems or problems of radiative equilibrium. Under reasonable assumptions it is proved that the solution possesses continuous derivatives in the interior of the interval of integration but may have mild singularities at the end-points.
Complex powers of elliptic pseudodifferential operators
1986
The aim of this paper is the construction of complex powers of elliptic pseudodifferential operators and the study of the analytic properties of the corresponding kernels kS (x,y). For x=y, the case of principal interest, the domain of holomorphy and the singularities of kS (x,x) are shown to depend on the asymptotic expansion of the symbol. For classical symbols, kS (x,x) is known to be meromorphic on ℂ with simple poles in a set of equidistant points on the real axis. In the more general cases considered here, the singularities may be distributed over a half plane and kS (x,x) can not always be extended to337-2. An example is given where kS (x,x) has a vertical line as natural boundary.
Pseudodifferential Analysis on Manifolds with Boundary — a Comparison of b-Calculus and Cone Algebra
2001
We establish a relation between two different approaches to a complete pseudodifferential analysis of totally characteristic or Fuchs type operators on compact manifolds with boundary respectively conical singularities: Melrose’s (overblown) b-calculus and Schulze’s cone algebra. Though quite different in their definition, we show that these two pseudodifferential calculi basically contain the same operators.
Symmetric Surfaces with Many Singularities
2004
Abstract Let G ⊂ SO(4) denote a finite subgroup containing the Heisenberg group. In this paper we classify all such groups, we find the dimension of the spaces of G-invariant polynomials and we give equations for the generators whenever the space has dimension two. Then we complete the study of the corresponding G-invariant pencils of surfaces in ℙ3 which we started in Sarti [Sarti, A. (2000). Pencils of symmetric surfaces in ℙ3(C). J. Algebra 246:429–452]. It turns out that we have five more pencils, two of them containing surfaces with nodes.