Search results for "Singularity"
showing 10 items of 352 documents
Topological charge selection rule for phase singularities
2009
We present a study of the dynamics and decay pattern of phase singularities due to the action of a system with a discrete rotational symmetry of finite order. A topological charge conservation rule is identified. The role played by the underlying symmetry is emphasized. An effective model describing the short range dynamics of the vortex clusters has been designed. A method to engineer any desired configuration of clusters of phase singularities is proposed. Its flexibility to create and control clusters of vortices is discussed.
Symmetry breaking and singularity structure in Bose-Einstein condensates
2012
We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity, and a Magnus force that introduces a torque about the axis of symmetry. For the analytical non-interacting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the tra…
Sound velocity and dimensional crossover in a superfluid Fermi gas in an optical lattice
2005
We study the sound velocity in cubic and non-cubic three-dimensional optical lattices. We show how the van Hove singularity of the free Fermi gas is smoothened by interactions and eventually vanishes when interactions are strong enough. For non-cubic lattices, we show that the speed of sound (Bogoliubov-Anderson phonon) shows clear signatures of dimensional crossover both in the 1D and 2D limits.
Band Tails in a Disordered System
1993
In crystalline solids electronic excitations have a band structure. Energy intervals, in which excitations occur, are separated by band gaps, where the density of electronic states vanishes. At the band edge the density-of-states (DOS) has power law singularities, so-called van Hove singularities.
Multifractal electronic wave functions in disordered systems
1992
Abstract To investigate the electronic states in disordered samples we diagonalize very large secular matrices corresponding to the Anderson Hamiltonian. The resulting probability density of single electronic eigenstates in 1-, 2-, and 3-dimensional samples is analysed by means of a box-counting procedure. By linear regression we obtain the Lipschitz-Holder exponents and the corresponding singularity spectrum, typical for a multifractal set in each case. By means of a Legendre transformation the mass exponents and the generalized dimensions are derived. Consequences for spectroscopic intensities and transport properties are discussed.
Correlation Functions and Finite–Size Effects in Granular Media
2014
A model is considered, where the local order parameter is an n–component vector. This model allows us to calculate correlation functions, describing the correlations between local order parameter at different spatial coordinates. The longitudinal and transverse Fourier–transformed two–point correlation functions \(G_{\parallel }(\mathbf{k})\) and \(G_{\perp }(\mathbf{k})\) in presence of an external field h are considered in some detail. In the thermodynamic limit, these correlation functions exhibit the so-called Goldstone mode singularities below certain critical temperature at an infinitesimal external field \(h = +0\). The actual model can be applied to granular media, in which case it …
Stationary models of magnetized viscous tori around a Schwarzschild black hole
2020
We present stationary solutions of magnetized, viscous thick accretion disks around a Schwarzschild black hole. We assume that the tori are not self-gravitating, are endowed with a toroidal magnetic field, and obey a constant angular momentum law. Our study focuses on the role of the black hole curvature in the shear viscosity tensor and in their potential combined effect on the stationary solutions. Those are built in the framework of a causality-preserving, second-order gradient expansion scheme of relativistic hydrodynamics in the Eckart frame description which gives rise to hyperbolic equations of motion. The stationary models are constructed by numerically solving the general relativis…
Singularities in L^p-quasidisks
2021
We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed
Explicitly correlated coupled-cluster theory using cusp conditions. I. Perturbation analysis of coupled-cluster singles and doubles (CCSD-F12)
2010
Geminal functions based on Slater-type correlation factors and fixed expansion coefficients, determined by cusp conditions, have in recent years been forwarded as an efficient and numerically stable method for introducing explicit electron correlation into coupled-cluster theory. In this work, we analyze the equations of explicitly correlated coupled-cluster singles and doubles (CCSD-F12) theory and introduce an ordering scheme based on perturbation theory which can be used to characterize and understand the various approximations found in the literature. Numerical results for a test set of 29 molecules support our analysis and give additional insight. In particular, our results help ration…
Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations.
2010
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducin…