Search results for "Singularity"

showing 10 items of 352 documents

ON THE INDEX OF VECTOR FIELDS TANGENT TO HYPERSURFACES WITH NON-ISOLATED SINGULARITIES

2002

Let $F$ be a germ of a holomorphic function at $0$ in ${\bb C}^{n+1}$ , having $0$ as a critical point not necessarily isolated, and let $\tilde{X}:= \sum^n_{j=0} X^j(\partial/\partial z_j)$ be a germ of a holomorphic vector field at $0$ in ${\bb C}^{n+1}$ with an isolated zero at $0$ , and tangent to $V := F^{-1}(0)$ . Consider the ${\cal O}_{V,0}$ -complex obtained by contracting the germs of Kahler differential forms of $V$ at $0$ \renewcommand{\theequation}{0.\arabic{equation}} \begin{equation} \Omega^i_{V,0}:=\frac{\Omega^i_{{\bb C}^{n+1},0}}{F\Omega^i_{{\bb C}^{n+1},0}+dF\wedge{\Omega^{i-1}}_{{\bb C}^{n+1}},0} \end{equation} with the vector field $X:=\tilde{X}|_V$ on $V$ : \begin{equa…

CombinatoricsKähler differentialGeneral MathematicsMathematical analysisHolomorphic functionTangentVector fieldGravitational singularityTangent vectorvector fieldOmegaCritical point (mathematics)MathematicsJournal of the London Mathematical Society
researchProduct

SELF-ENERGIES AND VERTEX CORRECTIONS WITH TWO FACTORIZING LOOPS

1999

A complete set of factorizing two-loop self-energies and vertex corrections is calculated analytically for arbitrary masses and momenta — including the case of collinear singularities — within the ℛ-functions approach.

CombinatoricsVertex (graph theory)PhysicsSet (abstract data type)Nuclear and High Energy PhysicsGeneral Physics and AstronomyAstronomy and AstrophysicsGravitational singularityModern Physics Letters A
researchProduct

About Compactness of Faddeev Integral Equations for Three Charged Particles

1999

Momentum space three-body integral equations of the Faddeev type can not be used for Coulomb-like potentials, for energies above the breakup threshold. The reason is the occurrence of singularities in their kernels which destroy the compactness properties known to exist for purely short-range interactions. Using the rigorously equivalent formulation in terms of an effective-two- body theory, we prove that the nondiagonal kernels occurring therein possess on and off the energy shell only integrable singularities, provided all three particles have charges of the same sign (ie., only repulsive Coulomb interactions). In contrast, if some of the charges have opposite signs the nondiagonal kernel…

Compact spaceClassical mechanicsIntegrable systemCoulombPosition and momentum spaceGravitational singularityType (model theory)Integral equationMathematicsSign (mathematics)
researchProduct

A Lebesgue-type decomposition for non-positive sesquilinear forms

2018

A Lebesgue-type decomposition of a (non necessarily non-negative) sesquilinear form with respect to a non-negative one is studied. This decomposition consists of a sum of three parts: two are dominated by an absolutely continuous form and a singular non-negative one, respectively, and the latter is majorized by the product of an absolutely continuous and a singular non-negative forms. The Lebesgue decomposition of a complex measure is given as application.

Complex measurePure mathematicsSesquilinear formType (model theory)Lebesgue integration01 natural sciencesRegularitysymbols.namesakeSettore MAT/05 - Analisi MatematicaLebesgue decomposition0103 physical sciencesDecomposition (computer science)Complex measureFOS: Mathematics0101 mathematicsMathematicsMathematics::Functional AnalysisSingularitySesquilinear formApplied Mathematics010102 general mathematicsAbsolute continuityFunctional Analysis (math.FA)Mathematics - Functional Analysis47A07 15A63 28A12 47A12Product (mathematics)symbols010307 mathematical physicsNumerical range
researchProduct

Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

2014

In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different $Re$ numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous int…

Complex singularitieApplied MathematicsPrandtl numberFluid Dynamics (physics.flu-dyn)Mathematics::Analysis of PDEsFOS: Physical sciencesReynolds numberPhysics - Fluid DynamicsMathematical Physics (math-ph)MechanicsEnstrophyVortexPhysics::Fluid Dynamicssymbols.namesakeBoundary layerFlow separationBoundary-layer separationSingularityInviscid flowsymbolsSettore MAT/07 - Fisica MatematicaMathematical PhysicsViscous-inviscid interactionsMathematicsActa Applicandae Mathematicae
researchProduct

Singularity formation for Prandtl’s equations

2009

Abstract We consider Prandtl’s equations for an impulsively started disk and follow the process of the formation of the singularity in the complex plane using the singularity tracking method. We classify Van Dommelen and Shen’s singularity as a cubic root singularity. We introduce a class of initial data, uniformly bounded in H 1 , which have a dipole singularity in the complex plane. These data lead to a solution blow-up whose time can be made arbitrarily short within the class. This is numerical evidence of the ill-posedness of the Prandtl equations in H 1 . The presence of a small viscosity in the streamwise direction changes the behavior of the singularities. They stabilize at a distanc…

Complex singularitiePrandtl numberFOS: Physical sciencesRegularizing viscositySeparationPhysics::Fluid Dynamicssymbols.namesakeViscosityMathematics - Analysis of PDEsSingularityFOS: MathematicsUniform boundednessSpectral methodSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical analysisStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsPrandtl–Glauert transformationPrandtl’s equationsymbolsGravitational singularitySpectral methodComplex planeAnalysis of PDEs (math.AP)Blow–up timePhysica D: Nonlinear Phenomena
researchProduct

Complex singularities in KdV solutions

2016

In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.

Complex singularities Padé approximation Borel and power series methods Dispersive shocksApplied MathematicsGeneral MathematicsNumerical analysis010102 general mathematicsMathematical analysis01 natural sciences010305 fluids & plasmasAsymptotic dynamics0103 physical sciencesPadé approximantGravitational singularity0101 mathematicsAlgebra over a fieldKorteweg–de Vries equationDispersion (water waves)Complex planeMathematics
researchProduct

An example of cancellation of infinities in the star-quantization of fields

1993

Within the *-quantization framework, it is shown how to remove some of the divergences occurring in theλo 2 4 -theory by introducing aλ-dependent *-product cohomologically equivalent to the normal *-product.

Complex systemStatistical and Nonlinear PhysicsTopologyRenormalizationsymbols.namesakeTheoretical physicsSingularityHamiltonian formalismRegularization (physics)symbolsQuantum field theoryHamiltonian (quantum mechanics)Mathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

Explicit Characterization of Inclusions in Electrical Impedance Tomography

2001

In electrical impedance tomography one seeks to recover the spatial conductivity distribution inside a body from knowledge of the Neumann--Dirichlet map. In many practically relevant situations the conductivity is smooth apart from some inhomogeneities where the conductivity jumps to a higher or lower value. An explicit characterization of these inclusions is developed in this paper. To this end a class of dipole-like indicator functions is introduced, for which one has to check whether their boundary values are contained in the range of an operator determined by the measured Neumann--Dirichlet map. It is shown that this holds true if and only if the dipole singularity lies inside the inhom…

Computational MathematicsDipoleDistribution (mathematics)SingularityApplied MathematicsOperator (physics)Mathematical analysisInverse scattering problemConductivityElectrical impedance tomographyAnalysisCharacterization (materials science)MathematicsSIAM Journal on Mathematical Analysis
researchProduct

Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialf�llen

1975

Recursions are given for Richardson-extrapolation based on generalized asymptotic expansions for the solution of a finite algorithm depending upon a parameterh>0. In particular, these expansions may contain terms likeh ?·log(h), (?>0). Simplified formulae are established in special cases. They are applicable to numerical integration of functions with algebraic or logarithmic endpoint singularities and provide a Romberg-type quadrature.

Computational MathematicsLogarithmApplied MathematicsNumerical analysisMathematical analysisGravitational singularityFinite algorithmAlgebraic numberMathematicsNumerical integrationQuadrature (mathematics)Numerische Mathematik
researchProduct