Search results for "Slipping"

showing 2 items of 2 documents

Transmission of torque at the nanoscale

2018

In macroscopic mechanical devices torque is transmitted through gearwheels and clutches. In the construction of devices at the nanoscale, torque and its transmission through soft materials will be a key component. However, this regime is dominated by thermal fluctuations leading to dissipation. Here we demonstrate the principle of torque transmission for a disc-like colloidal assembly exhibiting clutch-like behaviour, driven by $27$ particles in optical traps. These are translated on a circular path to form a rotating boundary that transmits torque to additional particles confined to the interior. We investigate this transmission and find that it is determined by solid-like or fluid-like be…

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsStatistical Mechanics (cond-mat.stat-mech)General Physics and AstronomyThermal fluctuationsFOS: Physical sciences02 engineering and technologyDissipationCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologyRotation01 natural sciencesMechanism (engineering)Transmission (telecommunications)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)TorqueSoft Condensed Matter (cond-mat.soft)Clutch010306 general physics0210 nano-technologySlippingCondensed Matter - Statistical Mechanics
researchProduct

Computation of lock-in range for classic PLL with lead-lag filter and impulse signals

2016

For a classic PLL with square waveform signals and lead-lag filter for all possible parameters lock-in range is computed and corresponding diagrams are given. peerReviewed

lock-in rangephase-locked loopanalog PLLnonlinear analysisdefinitionpull-in rangecycle slippinghold-in rangelead-lag filter
researchProduct