Search results for "Sobolev Space"

showing 10 items of 164 documents

Characterisation of upper gradients on the weighted Euclidean space and applications

2020

In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.

Pure mathematicsEuclidean spaceApplied MathematicsMathematics::Analysis of PDEsContext (language use)Sobolev spaceLipschitz continuityFunctional Analysis (math.FA)46E35 53C23 26B05differentiaaligeometriaSobolev spaceMathematics - Functional AnalysisMathematics - Analysis of PDEsRadon measureEuclidean geometryFOS: MathematicsWeighted Euclidean spaceDecomposability bundlefunktionaalianalyysiEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

FREDHOLM THEORY FOR DEGENERATE PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH FIBERED BOUNDARIES

2001

We consider the calculus Ψ*,* de(X, deΩ½) of double-edge pseudodifferential operators naturally associated to a compact manifold X whose boundary is the total space of a fibration. This fits into the setting of boundary fibration structures, and we discuss the corresponding geometric objects. We construct a scale of weighted double-edge Sobolev spaces on which double-edge pseudodifferential operators act as bounded operators, characterize the Fredholm elements in Ψ*,* de(X) by means of the invertibility of an appropriate symbol map, and describe a K-theoretical formula for the Fredholm index extending the Atiyah–Singer formula for closed manifolds. The algebra of operators of order (0, 0) i…

Pure mathematicsExact sequenceApplied MathematicsMathematical analysisFibrationFredholm integral equationOperator theoryFredholm theoryManifoldSobolev spacesymbols.namesakeMathematics::K-Theory and HomologyBounded functionsymbolsAnalysisMathematicsCommunications in Partial Differential Equations
researchProduct

Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees

2019

In this paper, we study function spaces defined via dyadic energies on the boundaries of regular trees. We show that correct choices of dyadic energies result in Besov-type spaces that are trace spaces of (weighted) first order Sobolev spaces.

Pure mathematicsFunction spacetrace spaceMathematics::Analysis of PDEsMathematics::Classical Analysis and ODEs01 natural sciencesPotential theoryfunktioteoriaregular treeFOS: Mathematicsdyadic norm0101 mathematicsMathematics46E35 30L05Mathematics::Functional Analysis010102 general mathematicsFirst orderFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsSobolev spaceNorm (mathematics)Besov-type spacepotentiaaliteoriafunktionaalianalyysiAnalysisPotential Analysis
researchProduct

Interpolation properties of Besov spaces defined on metric spaces

2010

Let X = (X, d, μ)be a doubling metric measure space. For 0 < α < 1, 1 ≤p, q < ∞, we define semi-norms When q = ∞ the usual change from integral to supremum is made in the definition. The Besov space Bp, qα (X) is the set of those functions f in Llocp(X) for which the semi-norm ‖f ‖ is finite. We will show that if a doubling metric measure space (X, d, μ) supports a (1, p)-Poincare inequality, then the Besov space Bp, qα (X) coincides with the real interpolation space (Lp (X), KS1, p(X))α, q, where KS1, p(X) is the Sobolev space defined by Korevaar and Schoen [15]. This results in (sharp) imbedding theorems. We further show that our definition of a Besov space is equivalent with the definiti…

Pure mathematicsGeneral Mathematics010102 general mathematicsMathematical analysisSpace (mathematics)01 natural sciencesMeasure (mathematics)Infimum and supremum010101 applied mathematicsSobolev spaceMetric spaceMetric (mathematics)Interpolation spaceBesov space0101 mathematicsMathematicsMathematische Nachrichten
researchProduct

Dorronsoro's theorem in Heisenberg groups

2020

A theorem of Dorronsoro from the 1980s quantifies the fact that real-valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical vs. horizontal Poincare inequalities for real-valued functions on the Heisenberg group, originally due to Austin-Naor-Tessera and Lafforgue-Naor.

Pure mathematicsGeneral Mathematics010102 general mathematicsMathematical proof01 natural sciencesSobolev spacesymbols.namesakeEuclidean geometryPoincaré conjectureHeisenberg groupsymbolsAlmost everywhereAffine transformation0101 mathematicsVariable (mathematics)MathematicsBulletin of the London Mathematical Society
researchProduct

Fourier analysis of periodic Radon transforms

2019

We study reconstruction of an unknown function from its $d$-plane Radon transform on the flat $n$-torus when $1 \leq d \leq n-1$. We prove new reconstruction formulas and stability results with respect to weighted Bessel potential norms. We solve the associated Tikhonov minimization problem on $H^s$ Sobolev spaces using the properties of the adjoint and normal operators. One of the inversion formulas implies that a compactly supported distribution on the plane with zero average is a weighted sum of its X-ray data.

Pure mathematicsGeneral MathematicsBessel potential01 natural sciencesTikhonov regularizationsymbols.namesakeFOS: Mathematics0101 mathematicsperiodic distributionsMathematicsRadon transformRadon transformApplied Mathematics44A12 42B05 46F12 45Q05010102 general mathematicsZero (complex analysis)Function (mathematics)Fourier analysisFunctional Analysis (math.FA)010101 applied mathematicsSobolev spaceregularizationMathematics - Functional AnalysisDistribution (mathematics)Fourier analysissymbolsAnalysis
researchProduct

Sobolev-type spaces from generalized Poincaré inequalities

2007

We de ne a Sobolev space by means of a generalized Poincare inequality and relate it to a corresponding space based on upper gradients. 2000 Mathematics Subject Classi cation: Primary 46E35, Secondary 46E30, 26D10

Pure mathematicsGeneral MathematicsMathematical analysisPoincaré inequalityType (model theory)Space (mathematics)Sobolev inequalitySobolev spacesymbols.namesakesymbolsInterpolation spaceBirnbaum–Orlicz spaceMathematicsSobolev spaces for planar domainsStudia Mathematica
researchProduct

Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces

2013

Motivated by the results of Korry, and Kinnunen and Saksman, we study the behaviour of the discrete fractional maximal operator on fractional Hajlasz spaces, Hajlasz-Besov, and Hajlasz-Triebel-Lizorkin spaces on metric measure spaces. We show that the discrete fractional maximal operator maps these spaces to the spaces of the same type with higher smoothness. Our results extend and unify aforementioned results. We present our results in a general setting, but they are new already in the Euclidean case.

Pure mathematicsGeneral MathematicsMetric measure spaceSpace (mathematics)Triebel–Lizorkin spaceMeasure (mathematics)Triebel-Lizorkin spaceFOS: Mathematics46E35Birnbaum–Orlicz spaceLp spaceBesov spacefractional Sobolev spaceMathematicsMathematics::Functional Analysista111Mathematical analysisFractional Sobolev spaceFunctional Analysis (math.FA)Fractional calculusMathematics - Functional Analysismetric measure space42B25 46E35fractional maximal functionBesov spaceInterpolation spaceFractional maximal function42B25
researchProduct

Sharp inequalities via truncation

2003

Abstract We show that Sobolev–Poincare and Trudinger inequalities improve to inequalities on Lorentz-type scales provided they are stable under truncations.

Pure mathematicsInequalityTruncationmedia_common.quotation_subjectApplied MathematicsMathematical analysisMathematics::Analysis of PDEsPoincaré inequalitySobolev inequalitySobolev spacesymbols.namesakesymbolsAnalysisMathematicsmedia_commonJournal of Mathematical Analysis and Applications
researchProduct

In between the inequalities of Sobolev and Hardy

2015

We establish both sufficient and necessary conditions for the validity of the so-called Hardy-Sobolev inequalities on open sets of the Euclidean space. These inequalities form a natural interpolating scale between the (weighted) Sobolev inequalities and the (weighted) Hardy inequalities. The Assouad dimension of the complement of the open set turns out to play an important role in both sufficient and necessary conditions.

Pure mathematicsInequalitymedia_common.quotation_subjectDimension (graph theory)Open set35A23 (26D15 46E35)Scale (descriptive set theory)01 natural sciencesSobolev inequalityMathematics - Analysis of PDEsEuclidean spaceClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsmedia_commonComplement (set theory)MathematicsMathematics::Functional AnalysisEuclidean space010102 general mathematicsMathematical analysista111010101 applied mathematicsSobolev spaceMathematics - Classical Analysis and ODEsHardy-Sobolev inequalitiesAnalysisAnalysis of PDEs (math.AP)
researchProduct