Search results for "Sobolev inequality"

showing 10 items of 41 documents

Gradient Estimate for Solutions to Poisson Equations in Metric Measure Spaces

2011

Let $(X,d)$ be a complete, pathwise connected metric measure space with locally Ahlfors $Q$-regular measure $\mu$, where $Q>1$. Suppose that $(X,d,\mu)$ supports a (local) $(1,2)$-Poincar\'e inequality and a suitable curvature lower bound. For the Poisson equation $\Delta u=f$ on $(X,d,\mu)$, Moser-Trudinger and Sobolev inequalities are established for the gradient of $u$. The local H\"older continuity with optimal exponent of solutions is obtained.

Sobolev inequalityMathematics::Analysis of PDEsHölder conditionPoincaré inequality31C25 31C45 35B33 35B65Poisson equationSpace (mathematics)01 natural sciencesMeasure (mathematics)Sobolev inequalitysymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsMoser–Trudinger inequalityCurvatureRegular measureta111010102 general mathematicsMathematical analysisPoincaré inequalityMetric (mathematics)Riesz potentialsymbols010307 mathematical physicsPoisson's equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Regularity of the inverse of a Sobolev homeomorphism in space

2006

Let Ω ⊂ Rn be open. Given a homeomorphism of finite distortion with |Df| in the Lorentz space Ln−1, 1 (Ω), we show that and f−1 has finite distortion. A class of counterexamples demonstrating sharpness of the results is constructed.

Sobolev spaceDistortion (mathematics)Lorentz spaceGeneral MathematicsMathematical analysisComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBesov spaceInterpolation spaceSpace (mathematics)HomeomorphismMathematicsSobolev inequalityProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Removable sets for Sobolev spaces

1999

We study removable sets for the Sobolev space W1,p. We show that removability for sets lying in a hyperplane is essentially determined by their thickness measured in terms of a concept of p-porosity.

Sobolev spaceHyperplaneGeneral MathematicsMathematical analysisSobolev spaces for planar domainsMathematicsSobolev inequalityArkiv för Matematik
researchProduct

Maximal potentials, maximal singular integrals, and the spherical maximal function

2014

We introduce a notion of maximal potentials and we prove that they form bounded operators from L to the homogeneous Sobolev space Ẇ 1,p for all n/(n − 1) < p < n. We apply this result to the problem of boundedness of the spherical maximal operator in Sobolev spaces.

Sobolev spaceMathematics::Functional AnalysisHomogeneousApplied MathematicsGeneral MathematicsBounded functionMathematical analysisMathematics::Analysis of PDEsMaximal operatorMaximal functionSingular integralMathematicsSobolev inequalityProceedings of the American Mathematical Society
researchProduct

Regularity of the Inverse of a Sobolev Homeomorphism

2011

We give necessary and sufficient conditions for the inverse ofa Sobolev homeomorphism to be a Sobolev homeomorphism and conditions under which the inverse is of bounded variation.

Sobolev spaceMathematics::Functional AnalysisMathematics::Dynamical SystemsBounded variationMathematical analysisMathematics::Analysis of PDEsMathematics::General TopologyInverseMathematics::Geometric TopologyHomeomorphismMathematicsSobolev inequalityProceedings of the International Congress of Mathematicians 2010 (ICM 2010)
researchProduct

Generalized dimension estimates for images of porous sets under monotone Sobolev mappings

2014

We give an essentially sharp estimate in terms of generalized Hausdorff measures for images of porous sets under monotone Sobolev mappings, satisfying suitable Orlicz-Sobolev conditions.

Sobolev spaceMathematics::Functional AnalysisMonotone polygonDimension (vector space)Applied MathematicsGeneral MathematicsMathematical analysisMathematics::Analysis of PDEsSobolev inequalityMathematicsProceedings of the American Mathematical Society
researchProduct

Continuity of the maximal operator in Sobolev spaces

2006

We establish the continuity of the Hardy-Littlewood maximal operator on Sobolev spaces W 1,p (R n ), 1 < p < ∞. As an auxiliary tool we prove an explicit formula for the derivative of the maximal function.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMaximal operatorMaximal functionDerivativeSobolev inequalityMathematicsProceedings of the American Mathematical Society
researchProduct

De Giorgi–Nash–Moser Theory

2015

We consider the second-order, linear, elliptic equations with divergence structure $$\mathrm{div} (\mathbb{A}(x)\nabla u(x))\;=\;\sum\limits^n_{i,j=1}\;\partial_{x_{i}}(a_{ij}(x)\partial_{x_{j}}u(x))\;=\;0.$$

Sobolev spacePhysicsPure mathematicsWeak solutionStructure (category theory)Nabla symbolDivergence (statistics)Harnack's inequalitySobolev inequality
researchProduct

Embedding of Sobolev Spaces into Lipschitz Spaces

1989

The main result of the paper is that if Ω is a bounded uniform domain in ℝn and p>n, then the Sobolev space Wl, p(Ω) embeds continously into Cα(Ω), α = 1 - n/p.

Sobolev spacePure mathematicsLipschitz domainInterpolation spaceBirnbaum–Orlicz spaceLp spaceTopologyDomain (mathematical analysis)Sobolev inequalityMathematicsSobolev spaces for planar domains
researchProduct

Hölder continuity of Sobolev functions and quasiconformal mappings

1993

Sobolev spaceQuasiconformal mappingPure mathematicsGeneral MathematicsHölder conditionBeltrami equationMathematicsSobolev inequalityMathematische Zeitschrift
researchProduct