Search results for "Sodium silicate"
showing 8 items of 18 documents
Intermediate Range Order in Silicate Melts and Glasses: Computer Simulation Studies
2002
ABSTRACTWe present the results of large scale computer simulations to discuss the structural and dynamic properties of silicate melts with the compositions (Na2O)(2·SiO2), (Na2O)(20·SiO2) and (Al2O3)(2·SiO2). We show that these systems exhibit additional intermediate range order as compared to silica (SiO2) where the characteristic intermediate length scales stem from the tetrahedral network structure. Furthermore we show that the sodium dynamics in the sodium silicate systems exhibits a very peculiar feature: the long–time decay of the incoherent intermediate scattering function can be described by a Kohlrausch law with a constant exponent β for q > qth whereby qth is smaller than the l…
The dynamics of melts containing mobile ions: computer simulations of sodium silicates
2003
We present the results of large-scale computer simulations in order to discuss the structural and dynamic properties of sodium silicate melts with the compositions (Na2O)2(SiO2) (NS2) and (Na2O)20(SiO2) (NS20). We show that, compared to silica (SiO2), these systems exhibit additional intermediate range order on intermediate length scales that stem from the tetrahedral network structure. By means of intermediate-scattering functions, we characterize the dynamics of sodium in the system under consideration. Whereas in NS2 the incoherent scattering functions for Na decay much faster to zero than the coherent ones for Na–Na, in NS20 this different behaviour of the incoherent and coherent functi…
Transport of Mobile Particles in an Immobile Environment: Computer Simulations of Sodium Silicates
2007
Molecular dynamics (MD) simulations of various sodium silicate melts, (Na2O)x(SiO2) with x=2, 3, 20, are presented. In these systems, the mobility of sodium ions is much higher, often by orders of magnitude, than that of the silicon and oxygen atoms forming a tetrahedral network structure. We show that the high mobility of sodium is intimately related to the chemical ordering in sodium silicates. A network of percolating sodium-rich channels is formed in the static structure that serve as diffusion channels for the sodium ions. This channel network is revealed in static structure factors by a prepeak at the wavenumber q=0.95 A-1. Inelastic neutron scattering experiments of sodium silicate m…
Control of the pore wall thickness and thermal stability in low-cost bimodal porous silicas
2019
Abstract A new hierarchical bimodal mesoporous silica, labelled as UVM-12 (acronym of University of Valencia Materials), has been prepared by using a solution of sodium silicate as low-cost silicon source. The final self-assembling between cationic micelles of CTAB and anionic inorganic Si-based oligomers occurs in a homogeneous aqueous medium. The reaction is carried out from low-sized building blocks through a bottom-up approach. The UVM-12 solids combine two mesopore systems according to N2 adsorption–desorption isotherms, what is corroborated by TEM micrographs and XRD patterns. This material has been inorganically modified by incorporation of Al or Ti (M-UVM-12, M = Al, Ti) without alt…
Structural and dynamical properties of sodium silicate melts: An investigation by molecular dynamics computer simulation
2001
We present the results of large scale computer simulations in which we investigate the static and dynamic properties of sodium disilicate and sodium trisilicate melts. We study in detail the static properties of these systems, namely the coordination numbers, the temperature dependence of the Q^(n) species and the static structure factor, and compare them with experiments. We show that the structure is described by a partially destroyed tetrahedral SiO_4 network and the homogeneously distributed sodium atoms which are surrounded on average by 16 silicon and other sodium atoms as nearest neighbors. We compare the diffusion of the ions in the sodium silicate systems with that in pure silica a…
Biogeochemical Cycle of Silica in an Apolyhaline Interdunal Holocene Lake (Chad, N'Guigmi Region, Niger)
1999
During the Holocene, the apolyhaline conditions in interdunal ephemeral lakes in the Lake Chad region led to various diagenetic processes, which resulted in: (a) clay authigenesis, (b) organic matter lithification (plants and cyanobacterial mats), (c) precipitation of sodium silicate (magadiite, kenyaite, zeolite), and (d) chert neoformation. Each step in this diagenetic process involves silica, which can be highly mobile under such conditions. Therefore, the paleoenvironmental variations can be investigated using the Si cycle.http://link.springer. de/link/service/journals/00114/bibs/9086010/90860475.htm</HEA
Computer simulations of undercooled fluids and the glass transition
2000
Abstract Two model studies are presented that attempt to describe the static and dynamic properties of glass-forming fluids via molecular dynamics simulations: The first model is an atomistically realistic model of SiO 2 , the second model provides a coarse-grained description of polymer liquids, i.e., typical `fragile' glassformers, while SiO 2 is the prototype of a `strong glassformer'. For both models, attention is given to the questions as to which range of temperatures are properties in equilibrium, and whether such simulations can help to interpret experiments and/or check theoretical predictions. While in the simulation of SiO 2 using the potential of van Beest, Kramer and van Santen…
PLASMOGENY, A NEW SCIENCE OF THE ORIGIN OF LIFE
2014
The Church has always hampered the progress of Mankind so as to retain its hold over awareness, which is the basis of secular exploitation of the people.