Search results for "Solar Cell"
showing 10 items of 410 documents
Wpływ rozkładu widma promieniowania słonecznego na parametry multikrystalicznego ogniwa krzemowego
2014
W artykule opisano wyniki uzyskane z opracowanej aplikacji integrującej model rozkładu widma promieniowania słonecznego oraz model krzemowego monokrystalicznego ogniwa fotowoltaicznego. W ramach badań opracowano program - symulator widma promieniowania słonecznego wykorzystujący algorytmy i procedury numeryczne oparte na modelu SMARTS2. Ponadto, przygotowano aplikację pozwalającą na przeprowadzenie modelowania komputerowego zachowania się ogniw i analizę zmienności ich parametrów przy zastosowaniu różnych rozkładów spektralnych oświetlenia oraz różnych parametrów materiałowo-konstrukcyjnych ogniw PV. Z wykorzystaniem niniejszej aplikacji przeprowadzono szereg symulacji. Dokonano analizy zal…
Fabrication and Characterization of Dye-Sensitized Solar Cells
2014
Among the next-generation solar cells, a predominant role is played by Dye sensitized solar cells (DSSC) based on ruthenium complexes as sensitizers. They take advantage of a photoelectrochemical system to transform solar radiation into electric energy. In fact, DSSCs represent a cost-effective alternative to traditional silicon-based photovoltaic devices and they do not require expensive and sophisticated apparatus for their fabrication. In this work, we have produced and tested ruthenium DSSCs. In particular, we have measured the main parameters of these cells, such as the electrical and power performances and the efficiency levels, at different irradiance levels and at different incident…
Interfacial Engineering in Vacuum-Deposited Perovskite Solar Cells for Improved Performance and Space Stability
2021
Perovskite solar cells are an emerging technology that is evolving rapidly, with power conversion efficiency values that compete with traditional materials such as silicon. In this type of solar cells the photons are absorbed in the perovskite and the charges are extracted using transport materials. By sandwiching the perovskite between a material with and excess of negative (N) or positive (P) charge, one can fabricate a P-i-N or N-i-P structure depending on the deposition order of the materials. Perovskite solar cells have several advantages, mainly the possibility of being very thin thanks to the high absorption coefficient of the perovskite and the wide range of deposition techniques, c…
NANOWIRES AND THIN FILMS OF CIS/CIGS OBTAINED BY ELECTRODEPOSITION AS ABSORBER FOR SOLAR CELLS
2011
CuInSe2/Zn(S,O,OH) junction by electrochemical and chemical route for photovoltaic applications (GE 2014)
2014
Electrodeposition is a convenient technique for the development of low cost materials for photovoltaic (PV) device processing. Using a single step electrodeposition route, several groups have fabricated CIS (CuInSe) and CIGS (CuInGaSe) films. One of the most important requirements for successful application of one-step electrodeposition film formation is the ability to control composition of the deposited films and to develop polycrystalline microstructures with a low surface roughness and high sintered density.
Photoelectric valuation of highly efficient Dye-Sensitized Solar Cells
2015
Nowadays, a growing demand for free and clean energy requires the study and the development of new low-cost solar photovoltaic (PV) cells. Among them, Dye Sensitized Solar Cells (DSSCs) based on ruthenium complexes as sensitizers are assuming a great importance. The DSSCs under study are composed placing in succession a transparent conductive glass on which is screen-printed a mesoporous TiO2 thin film sensitized by a ruthenium based dye (N719) , an electrolytic solution containing a redox couple (I-/I3-) and another conductive glass covered by a thin transparent catalyst platinum film. In this work, we have measured the main photoelectrochemical parameters of the above mentioned DSSCs at d…
Light Soaking measurements on Ruthenium-based Dye Sensitized Solar Cells
2016
An interesting phenomenon occurring in Dye Sensitized Solar Cells (DSSCs) when exposed to an uninterrupted period of illumination is the so-called light soaking effect, which consists in the increase of the main electrical parameters of the cell, such as the photocurrent and the efficiency. Studying such an effect has noteworthy practical implications, ranging from the optimization of the manufacturing process to stability tests of DSSCs. In this paper, we present an experimental investigation on the performance variation, due to light soaking, of Ruthenium-based DSSCs.
Density of States evaluation of Molybdenum Oxide for c-Si solar cell
Silicon-based heterojunction technology (HJT) is one of the most promising candidates for high performance and low cost solar cells with world-record efficiency close to 27% in IBC architecture. The HJT exploits the excellent passivation properties of hydrogenated amorphous silicon (a-Si:H); although, the use of doped a-Si:H has drawbacks such as parasitic absorption and low-thermal budget to cope with back-end metallization. Replacing the p-type a-Si:H with molybdenum oxide (MoOx) is a viable alternative. Optimizing this hole-selective layer is needed; however information on the defect density of states (DOS), linked to oxygen vacancies is still lacking.