Search results for "Solar"

showing 10 items of 2301 documents

Structure of Small Magnetic Elements in the Solar Atmosphere

2012

High resolution images at different wavelengths, spectrograms and magnetograms, representing different levels of the solar atmosphere obtained with Hinode have been combined to study the 3-dimensional structure of the small magnetic elements in relation to their radiance. A small magnetic element is described as example of the study.

Astrophysics - Solar and Stellar AstrophysicsAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Observations of vortex motion in the solar photosphere using HINODE-SP data

2012

In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes such as the formation/disappearance of bright points accompanying the evolution of an observed convective vortical motion.

Astrophysics - Solar and Stellar AstrophysicsAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Instabilities in Interacting Binary Stars

2017

The types of instability in the interacting binary stars are reviewed. The project "Inter-Longitude Astronomy" is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. Totally we studied 1900+ variable stars of different types. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. Some highlights of our photometric and photo-polarimetric monitoring and math…

Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics
researchProduct

Supersonic Magnetic Flows in the Quiet Sun

2012

In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\,000 km$^2$. Most of the events…

Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Solar and Stellar AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Minimum main sequence mass in quadratic Palatini $f(\mathcal{R})$ gravity

2019

General Relativity yields an analytical prediction of a minimum required mass of roughly $\sim 0.08-0.09 M_{\odot}$ for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold (brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini $f(\mathcal{R})$ gravity and show that the corresponding newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strenghtening of the gravitational interaction inside astrophysical bodies. This fact modifies the General Relati…

Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Solar and Stellar Astrophysics (astro-ph.SR)General Relativity and Quantum Cosmology
researchProduct

Simulations of the Magneto-rotational Instability in Core-Collapse Supernovae

2009

We assess the importance of the magneto-rotational instability in core-collapse supernovae by an analysis of the growth rates of unstable modes in typical post-collapse systems and by numerical simulations of simplified models. The interplay of differential rotation and thermal stratification defines different instability regimes which we confirm in our simulations. We investigate the termination of the growth of the MRI by parasitic instabilities, establish scaling laws characterising the termination amplitude, and study the long-term evolution of the saturated turbulent state.

Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

The Solar Spectroscopy Explorer Mission

2010

The Solar Spectroscopy Explorer (SSE) concept is conceived as a scalable mission, with two to four instruments and a strong focus on coronal spectroscopy. In its core configuration it is a small strategic mission ($250-500M) built around a microcalorimeter (an imaging X-ray spectrometer) and a high spatial resolution (0.2 arcsec) EUV imager. SSE puts a strong focus on the plasma spectroscopy, balanced with high resolution imaging - providing for break-through imaging science as well as providing the necessary context for the spectroscopy suite. Even in its smallest configuration SSE provides observatory class science, with significant science contributions ranging from basic plasma and radi…

Astrophysics - Solar and Stellar AstrophysicsPhysics::Space PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Photospheric response to EB-like event

2016

Ellerman Bombs are signatures of magnetic reconnection, which is an important physical process in the solar atmosphere. How and where they occur is a subject of debate. In this paper we analyse Sunrise/IMaX data together with 3D MHD simulations that aim to reproduce the exact scenario proposed for the formation of these features. Although the observed event seems to be more dynamic and violent than the simulated one, simulations clearly confirm the basic scenario for the production of EBs. The simulations also reveal the full complexity of the underlying process. The simulated observations show that the Fe I 525.02 nm line gives no information on the height where reconnection takes place. I…

Astrophysics - Solar and Stellar AstrophysicsPhysics::Space PhysicsFOS: Physical sciencesAstrophysics::Solar and Stellar AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Does the Sun Shine byppor CNO Fusion Reactions?

2002

We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.

Astrophysics and AstronomyAstrofísica nuclearCNO cycleNuclear TheoryPhysics::Instrumentation and DetectorsSolar neutrinoSolar luminosityFOS: Physical sciencesGeneral Physics and AstronomyAstrophysicsAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNuclear fusionNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysicsStandard solar modelReaccions nuclears010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaHigh Energy Physics - PhenomenologyPhysics::Space PhysicsNuclear astrophysicsHigh Energy Physics::ExperimentNuclear reactionsNeutrinoOrder of magnitudePhysical Review Letters
researchProduct

XMM observations of NGC 2516 stars

2007

We present the characteristics of the X-ray variability of stars in the cluster NGC 2516 as derived from XMM-Newton/EPIC/pn data. The X-ray variations on short (hours), medium (months), and long (years) time scales have been explored. We detected 303 distinct X-ray sources by analysing six EPIC/pn observations; 194 of them are members of the cluster. Stars of all spectral types, from the early-types to the late-M dwarfs, were detected. Cone search capability for table J/A+A/456/977/table2 (X-ray and optical properties of NGC 2516 members in the XMM-Newton/EPIC/pn observations having more than 25 counts.)

Astrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLate type starsX-ray sourcesstellar astronomyOptical astronomyCosmologyOpen star clustersPhotometryobservational astronomyX ray sourcesAstrophysics::Solar and Stellar AstrophysicsWide-band photometryNatural SciencesLate-type starsAstrophysics::Galaxy AstrophysicsInfrared photometryWide band photometry
researchProduct