Search results for "Solar"
showing 10 items of 2301 documents
A tale of two emergences: Sunrise II observations of emergence sites in a solar active region
2017
R. Centeno et. al.
Magnetic shuffling of coronal downdrafts
2017
Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of …
Astrometric detection of a low-mass companion orbiting the star AB Doradus
1997
International audience; We report submilliarcsecond-precise astrometric measurements for the late-type star AB Doradus via a combination of VLBI (very long baseline interferometry) and HIPPARCOS data. Our astrometric analysis results in the precise determination of the kinematics of this star, which reveals an orbital motion readily explained as caused by gravitational interaction with a low-mass companion. From the portion of the reÑex orbit covered by our data and using a revised mass of the primary star (0.76 M _) derived from our new value of the parallax (66.3 mas \ n \ 67.2 mas), we Ðnd the dynamical mass of the newly discovered companion to be between 0.08 and 0.11 If accurate photom…
A giant exoplanet orbiting a very-low-mass star challenges planet formation models
2019
Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
2009
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…
A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
2018
Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 10 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evol…
Applications of a new set of methane line parameters to the modeling of Titan's spectrum in the 1.58 μm window
2012
International audience; In this paper we apply a recently released set of methane line parameters (Wang et al., 2011) to the modeling of Titan spectra in the 1.58 mu m window at both low and high spectral resolution. We first compare the methane absorption based on this new set of methane data to that calculated from the methane absorption coefficients derived in situ from DISR/Huygens (Tomasko et al., 2008a; Karkoschka and Tomasko, 2010) and from the band models of Irwin et al. (2006) and Karkoschka and Tomasko (2010). The Irwin et al. (2006) band model clearly underestimates the absorption in the window at temperature-pressure conditions representative of Titan's troposphere, while the Ka…
Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011
2016
We present study of the complex event consisting of several solar wind transients detected by Advanced Composition Explorer (ACE) on 4 -- 7 August 2011, that caused a geomagnetic storm with Dst$=-$110 nT. The supposed coronal sources -- three flares and coronal mass ejections (CMEs) occurred on 2 -- 4 August 2011 in the active region (AR) 11261. To investigate the solar origin and formation of these transients we studied kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and the differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic fie…
Radiometric calibration of SeaWIFS in the near infrared
2005
The radiometric calibration of the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) in the near infrared (band 8, centered on 865 nm) is evaluated by use of ground-based radiometer measurements of solar extinction and sky radiance in the Sun's principal plane at two sites, one located 13 km off Venice, Italy, and the other on the west coast of Lanai Island, Hawaii. The aerosol optical thickness determined from solar extinction is used in an iterative scheme to retrieve the pseudo aerosol phase function, i.e., the product of single-scattering albedo and phase function, in which sky radiance is corrected for multiple scattering effects. No assumption about the aerosol model is required. The ae…
Massive Oe/Be stars at low metallicity: Candidate progenitors of long GRBs?
2010
At low metallicity the B-type stars rotate faster than at higher metallicity, typically in the SMC. As a consequence, it was expected a larger number of fast rotators in the SMC than in the Galaxy, in particular more Be/Oe stars. With the ESO-WFI in its slitless mode, the SMC open clusters were examined and an occurence of Be stars 3 to 5 times larger than in the Galaxy was found. The evolution of the angular rotational velocity seems to be the main key on the understanding of the specific behaviour and of the stellar evolution of such stars at different metallicities. With the results of this WFI study and using observational clues on the SMC WR stars and massive stars, as well as the theo…