Search results for "Solvent"
showing 10 items of 1395 documents
2-Methyltetrahydrofuran: A Green Solvent for Iron-Catalyzed Cross-Coupling Reactions
2018
Iron‐catalyzed cross‐coupling reactions allow sustainable formation of C−C bonds using cost‐effective, earth‐abundant base‐metal catalysis for complex syntheses of pharmaceuticals, natural products, and fine chemicals. The major challenge to maintain full sustainability of the process is the identification of green and renewable solvents that can be harnessed to replace the conventional solvents for this highly attractive reaction. Herein, iron‐catalyzed cross‐coupling of aryl chlorides and tosylates with challenging organometallic reagents possessing β‐hydrogens is found to proceed in good to excellent yields with the green, sustainable, and eco‐friendly 2‐methyltetrahydrofuran (2‐MeTHF) a…
Hydrogen-Bonded Open-Framework with Pyridyl-Decorated Channels: Straightforward Preparation and Insight into Its Affinity for Acidic Molecules in Sol…
2017
International audience; An hydrogen-bonded open framework with pores decorated by pyridyl groups has been constructed following an off-charge-stoichiometry assemblage of protonated tetrakis(4-pyridyl-oxymethyl)methane and [Al(oxalate)3]3-, respectively the H-bond donor and acceptor of the ionic H-bond interactions. This supramolecular porous architecture (SPA-2) possesses 1 nm-large pores interconnected in 3D with high solvent accessible void (53%). It demonstrated remarkable affinity for acidic organic molecules in solution, which was investigated by the means of various carboxylic acids including larger drug molecules. Noteworthy, competing sorption between acetic acid and its halogenated…
Protonation of a Spherical Macrotricyclic Tetramine: Water Inclusion, Allosteric Effect, and Cooperativity
2017
The spherical macrotricyclic cryptand tetramine "C24" (1) displays remarkable protonation behaviour. It undergoes protonation in four successive steps for which pKa values of 11.17±0.05, 10.28±0.04, 6.00±0.06 and 3.08±0.08 have been determined at 298 K. The unusually close values for the first two protonations provide evidence for the encapsulation of a water molecule serving as effector for the second protonation, which is consistent with earlier observations that the exchange of protons bound in the diprotonated species with solvent protons is unusually slow and that 17 O NMR spectra show the presence of an oxygen centre in the same species quite distinct from that of solvent water. Encap…
Modulation of the ordering temperature in anilato-based magnets
2019
Abstract Four new 2D honeycomb anilato-based ferrimagnets with Mn(II) and Cr(III) have been prepared and characterized. These compounds, formulated as (NBu4)[MnCr(C6O4X2)3(PhCHO)]·PhY (X/Y = Cl/H (1), Br/H (2), Cl/CHO (3) and Br/CHO (4) show that it is possible to include benzaldehyde as a co-ligand coordinated to the Mn(II) metal atom in these 2D ferrimagnets. This inclusion increases the coordination number of Mn(II) to seven resulting in a change in the ordering temperatures of these 2D ferrimagnets (from ca. 10–11 K to ca. 7 K). Here we show the role played by the additional benzaldehyde ligand and by the crystallization solvent molecules (benzene in 1 and 2 and benzaldehyde in 3 and 4)…
A new chiral dimanganese(iii) complex: synthesis, crystal structure, spectroscopic, magnetic, and catalytic properties
2016
Two enantiomeric complexes of formula [MnIII2(μ-OCH3)2(R-valBINAM)2]·1.75DMF (1) and [MnIII2(μ-OCH3)2(S-valBINAM)2]·2DMF (2) [valBINAM = 1,1′-binaphthalene-2,2′-bis(3-methoxysalicylideneiminate)] have been synthesized using as a ligand the chiral Schiff bases resulting from the condensation reactions between o-vanillin and the chiral 1,1′-binaphthyl-2,2′-diamine. The structures of 1 and 2 which have been solved by single crystal X-ray diffraction consist of neutral dimers, the manganese(III) ions being bridged by two methoxido anions, arising from the solvent, and by two valBINAM2− ligands. Their circular dichroism spectra at room temperature emphasize the occurrence of the exciton coupling…
Solvent effects on the dimensionality of oxamato-bridged manganese(II) compounds
2018
Two new oxamate-containing manganese(II) complexes, [{Mn(H2edpba)(H2O)2}2]n (1) and [Mn(H2edpba)(dmso)2]∙dmso∙CH3COCH3∙H2O (2) (H4edpba = N,N′-ethylenediphenylenebis(oxamic acid) and dmso = dimethylsulfoxide), have been synthesized and the structures of 1 and 2 were characterized by single crystal X-ray diffraction. The structure of 1 consists of neutral honeycomb networks in which each manganese(II) is six-coordinate by one H2edpba2− ligand and two carboxylate–oxygens from two other H2edpba2− ligands building the equatorial plane. Each manganese is connected to its nearest neighbor through two carboxylate(monoprotonated oxamate) bridges in an anti-syn conformation. A dmso solution of singl…
CuII2, CuII4 and CuII6 complexes with 3-(2-pyridyl)pyrazolate. Structure, magnetism and core interconversion
2019
Abstract Reactions of stoichiometric amounts of L1(−) (HL1 = 3-(2-pyridyl)pyrazole) with [Cu(H2O)6](ClO4)2, with or without PhCO2−, in MeOH or N,N′-dimethylformamide (dmf), led to the isolation of three copper(II) complexes of varying nuclearity, [CuII2(L1)2(ClO4)2(MeOH)2] (1), [CuII4(L1)4(O2CPh)2(MeOH)4](ClO4)2·2H2O (2) and [CuII6(L1)6(O2CPh)2(ClO4)2(dmf)4](ClO4)2·2dmf·2H2O (3). Structural analysis reveals two centrosymmetric four-coordinate {CuII(L1)(ClO4)(MeOH)} units are dipyrazolate-bridged in 1, giving rise to a square-pyramidal (SP; τ = 0.13) coordination to the CuII ion. In 2, two centrosymmetric four-coordinate dipyrazolate-bridged {CuII2(μ-L1)2(MeOH)2}2+ units in two layers are he…
Iron( ii ) and cobalt( ii ) complexes based on anionic phenanthroline-imidazolate ligands: reversible single-crystal-to-single-crystal transformations
2018
A series of low-spin FeII and CoII complexes based on phenanthroline-imidazolate (PIMP) ligands are reported. The FeII complex (H9O4)[Fe(PIMP)3]·(C4H10O)2(H2O) (1a) shows reversible crystalline phase transformations to afford two new phases (H9O4)[Fe(PIMP)3]·(H2O) (1b) and (H9O4)[Fe(PIMP)3]·(C8H18O)(C4H10O)(H2O) (1c) by release of diethyl ether and absorption of diethyl/dibutyl ether, respectively. This reversible uptake/release of solvent molecules is a clear example of single-crystal-to-single-crystal transformation involving a discrete metal complex. On the other hand, the corresponding CoII complex (H9O4)[Co(PIMP)3]·(C4H10O)2(H2O)2 (2) does not exhibit similar phase transformations. In …
Three Co(II) Metal-Organic Frameworks with Diverse Architectures for Selective Gas Sorption and Magnetic Studies.
2019
Three Co(II) metal–organic frameworks, namely, {[Co2(L)2(OBA)2(H2O)4]·xG}n (1), {[Co(L)0.5(OBA)]·xG}n (2), and {[Co2(L)2(OBA)2(H2O)]·DMA·xG}n (3) [where L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene, H2OBA = 4,4′-oxybisbenzoic acid, DMF = dimethylformamide, DMA = dimethylacetamide, and G denotes disordered guest molecules], have been synthesized under diverse reaction conditions through self-assembly of a bent dicarboxylate and a linear spacer with a Co(II) ion. While 1 is crystallized at room temperature in DMF to form a 2D layer structure, 2 is formed by the assembly of similar components under solvothermal conditions with a 3D network structure. On the other hand, changing the solvent t…
Nature of (C5Me5)2Mo2O5in water–methanol at pH 0–14. On the existence of (C5Me5)MoO2(OH) and (C5Me5)MoO2+: a stopped-flow kinetic analysis
2002
A stopped-flow analysis of compound Cp*2Mo2O5 (Cp* = η5-C5Me5) in 20% MeOH–H2O over the pH range 0–14 has provided the speciation of this molecule as well as the rate and mechanism of interconversion between the various species that are present in solution. The compound is a strong electrolyte in this solvent combination, producing the Cp*MoO2+ and Cp*MoO3− ions in equilibrium with a small amount of Cp*MoO2(OH), the latter attaining ca. 15% relative amount at pH 4. At low pH ( 6. The acid dissociation constant of Cp*MoO2(OH) has been measured directly (pK = 3.65 ± 0.02) while the pK for the protonation equilibrium leading to Cp*MoO3H2+ is estimated as 5. The prevalent pathway at high pH i…