Search results for "Space."
showing 10 items of 21534 documents
Control flow strategy in a receiver coil for nuclear magnetic resonance for imaging
2020
A mathematical discussion is introduced to describe the receiver coil characterizing a nuclear magnetic resonance for imaging, starting from a general shape of the conductor. A set of different inductance calculations have been introduced, varying the shape of the conductor. The inductance calculation led to a general expression of the magnetic field of a single coil characterized by a rectangular shape. A dynamic model of the receiver coil has been developed to represent the natural frequencies that characterize the operational bandwidth. A nonstationary control strategy is implemented to make a real time changing of the operational bandwidth. The frequency response of the coil generates …
Investigation on partial discharges in HVDC cables after polarity reversal events
2020
Due to the accumulation of space charge inside the insulating layer of HVDC cables, the electric field under load conditions may be altered compared to what is established in HVAC cables. For example, a high thermal gradient leads to the inversion of the electric field pattern until the maximum value is reached in proximity of the dielectric-semicon interfaces. These maximum values can be further increased due to transient overvoltages and polarity reversal events until reaching electric field values higher than the rated ones. The main goal of this research is to investigate the possibility that, during these transient phenomena, conditions are created that favor the occurrence of partial …
Effect of Polarity Reversal on the Partial Discharge Phenomena
2020
In the field of High Voltage Direct Current (HVDC) transmission, the space charge accumulation phenomenon and the Partial Discharges (PD) phenomena are considered the main causes of dielectric ageing. During the years, the degradation effect of both phenomena under constant DC stress has been widely studied by several researchers. In case of polarity reversal, typically carried out to control bi-directional power flow between interconnected High Voltage transmission systems, the space charge movement may not synchronously follow the electric field polarity. This could make the moment of reversing polarity a very critical one, where space charge injected during preceding polarity produces hi…
Polarity reversal in HVDC joints - The effect of the axial thermal conduction
2020
It has been shown that the establishment of a thermal gradient over the radius of HVDC cables involves the accumulation of space charge within the dielectric layer. High thermal gradients over the insulation thickness of loaded cables can lead to the inversion of the radial electric field pattern. In this scenarios, transient overvoltages and polarity reversal can lead to local and transitory peaks of electric field. Since the temperature distribution plays an important role in reaching critical values of the electric field, it has been considered interesting to have a more in-depth view of the thermal behavior of HVDC systems close the discontinuities of the geometry along the cable axis. …
Space‐vector state dynamic model of SynRM considering self‐ and cross‐saturation and related parameter identification
2020
This study proposes a state formulation of the space-vector dynamic model of the Synchronous Reluctance Motor (SynRM) considering both saturation and cross-saturation effects. The proposed model adopts the stator currents as state variables and has been theoretically developed in both the rotor and stator reference frames. The proposed magnetic model is based on a flux versus current approach and relies on the knowledge of 11 parameters. Starting from the definition of a suitable co-energy variation function, new flux versus current functions have been initially developed, based on the hyperbolic functions and, consequently, the static and dynamic inductance versus current functions have be…
A new technique for partial discharges measurement under DC periodic stress
2017
The aim of the present work is to recognize the type of defect in insulating materials employed in DC electrical systems. This analysis, under AC stress, is carried out by using the Phase Resolved method (PRPD). While, under constant voltage stress this method cannot be performed and measurements show complexities. In order to overcome these problems, a new technique is proposed, based on the application of a periodic continuous waveform. Simulation results, carried out by using a model based on a time-variable conductance of an air void defect, showed the PRPD pattern that can be obtain. Furthermore, compared to the constant DC stress, the measurement duration became lower and the discharg…
Acoustic Wave Behavior in a Specimen Containing an Air Void Defect
2019
The PEA method is the most used technique for the space charge measurements. As is well known, this method uses pressure waves to detect the charges accumulated in solid dielectrics. Based on its working principle, the generated acoustic waves travel within PEA cell and the specimen under test in order to be finally detected by the piezoelectric sensor. For a multilayer specimen and, in particular, in case of different materials that make up the specimen, the acoustic wave reflection is inevitable. Considering that, in several cases, the reflected waves could be detected by the piezoelectric sensor before than the main signals, the PEA cell output profile could results distorted. Based on t…
Review of the PEA Method for Space Charge Measurements on HVDC Cables and Mini-Cables
2019
This review takes into account articles and standards published in recent years concerning the application of the Pulsed Electro Acoustic (PEA) method for space charge measurement on High Voltage Direct Current (HVDC) cables and mini-cables. Since the 80s, the PEA method has been implemented for space charge measurements on flat specimens in order to investigate space charge phenomena and to evaluate the ageing of dielectrics. In recent years, this technique has been adapted to cylindrical geometry. Several studies and experiments have been carried out on the use of the PEA method for full size cables and HVDC cable models. The experiments have been conducted using different arrangements of…
On the ‘expanded local mode’ approach applied to the methane molecule: isotopic substitution CH2D2←CH4
2011
On the basis of a compilation of the ‘expanded local mode’ model and the general isotopic substitution theory, sets of simple analytical relations between different spectroscopic parameters (harmonic frequencies, ωλ, anharmonic coefficients, x λμ, ro-vibrational coefficients, , different kinds of Fermi- and Coriolis-type interaction parameters) of the CH2D2 molecule are derived. All of them are expressed as simple functions of a few initial spectroscopic parameters of the mother, CH4, molecule. Test calculations with the derived isotopic relations show that, in spite of a total absence of initial information about the CH2D2 species, the numerical results of the calculations have a very good…
Communication: multireference equation of motion coupled cluster: a transform and diagonalize approach to electronic structure.
2014
The novel multireference equation-of-motion coupled-cluster (MREOM-CC) approaches provide versatile and accurate access to a large number of electronic states. The methods proceed by a sequence of many-body similarity transformations and a subsequent diagonalization of the transformed Hamiltonian over a compact subspace. The transformed Hamiltonian is a connected entity and preserves spin- and spatial symmetry properties of the original Hamiltonian, but is no longer Hermitean. The final diagonalization spaces are defined in terms of a complete active space (CAS) and limited excitations (1h, 1p, 2h, …) out of the CAS. The methods are invariant to rotations of orbitals within their respective…