Search results for "Sparsification"

showing 5 items of 5 documents

Reduced complexity models in the identification of dynamical networks: Links with sparsification problems

2009

In many applicative scenarios it is important to derive information about the topology and the internal connections of more dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology. We cast the problem as the optimization of a cost function operating a trade-off between accuracy and complexity in the final model. We address the problem of reducing the complexity by fixing a certain degree of sparsity, and trying to find the solution that “better” satisfi…

Approximation theoryMathematical optimizationSettore ING-INF/04 - AutomaticaDynamical systems theoryComputational complexity theoryNode (networking)A priori and a posteriorisparsification compressing sensing estimation networksNetwork topologyGreedy algorithmTopology (chemistry)MathematicsProceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
researchProduct

Filtering Real World Networks: A Correlation Analysis of Statistical Backbone Techniques

2023

Networks are an invaluable tool for representing and understanding complex systems. They offer a wide range of applications, including identifying crucial nodes, uncovering communities, and exploring network formation. However, when dealing with large networks, the computational challenge can be overwhelming. Fortunately, researchers have developed several techniques to address this issue by reducing network size while preserving its fundamental properties [1-9]. To achieve this goal, two main approaches have emerged: structural and statistical methods. Structural methods aim to keep a set of topological features of the network while reducing its size. In contrast, statistical methods elimi…

Graph SummarizationSparsificationBackbone Filtering TechniquesNetwork Compression[INFO] Computer Science [cs]Complex Networks
researchProduct

NetBone: A Python Package for Extracting Backbones of Weighted Networks

2023

NetBone is a new open-source Python package designed to simplify analyzing complex networks. With a wide range of techniques available, Net-Bone allows researchers to extract the backbone of a network while preserving its essential structure. The package includes nine structural methods and five statistical techniques, offering users a comprehensive solution to network analysis. It is user-friendly and straightforward to use, with easy installation. The package accepts different types of inputs, including data frames or Networkx graphs, and provides evaluation measures for comparative purposes. Additionally, NetBone offers an option to generate plots. Its versatility makes it a valuable too…

Graph SummarizationSparsificationBackbone Filtering TechniquesNetwork Compression[INFO] Computer Science [cs]Complex Networks
researchProduct

Model Identification of a Network as Compressing Sensing

2013

In many applications, it is important to derive information about the topology and the internal connections of dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology, and unveiling an unknown structure as the estimate of a "sparse Wiener filter". A geometric interpretation of the problem in a pre-Hilbert space for wide-sense stochastic processes is provided. We cast the problem as the optimization of a cost function where a set of parameters are used t…

IdentificationReduced modelTheoretical computer scienceGeneral Computer ScienceDynamical systems theoryComputer scienceNetworkTopology (electrical circuits)Dynamical Systems (math.DS)Systems and Control (eess.SY)Set (abstract data type)symbols.namesakeFOS: MathematicsFOS: Electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringMathematics - Dynamical SystemsMathematics - Optimization and ControlMathematics - General TopologySparsificationMechanical EngineeringWiener filterSystem identificationGeneral Topology (math.GN)Function (mathematics)Compressive sensingIdentification (information)Compressed sensingControl and Systems EngineeringOptimization and Control (math.OC)symbolsIdentification; Sparsification; Reduced models; Networks; Compressive sensingComputer Science - Systems and Control
researchProduct

Reduced Complexity Models in the Identifi cation of Dynamical Networks: links with sparsi cation problems.

2009

In many applicative scenarios it is important to derive information about the topology and the internal connections of more dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology. We cast the problem as the optimization of a cost function operating a trade-off between accuracy and complexity in the final model. We address the problem of reducing the complexity by fixing a certain degree of sparsity, and trying to find the solution that ``better'' satis…

Settore ING-INF/04 - AutomaticaIdentification Sparsification Reduced Models Networks
researchProduct