Search results for "Sparsification"
showing 5 items of 5 documents
Reduced complexity models in the identification of dynamical networks: Links with sparsification problems
2009
In many applicative scenarios it is important to derive information about the topology and the internal connections of more dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology. We cast the problem as the optimization of a cost function operating a trade-off between accuracy and complexity in the final model. We address the problem of reducing the complexity by fixing a certain degree of sparsity, and trying to find the solution that “better” satisfi…
Filtering Real World Networks: A Correlation Analysis of Statistical Backbone Techniques
2023
Networks are an invaluable tool for representing and understanding complex systems. They offer a wide range of applications, including identifying crucial nodes, uncovering communities, and exploring network formation. However, when dealing with large networks, the computational challenge can be overwhelming. Fortunately, researchers have developed several techniques to address this issue by reducing network size while preserving its fundamental properties [1-9]. To achieve this goal, two main approaches have emerged: structural and statistical methods. Structural methods aim to keep a set of topological features of the network while reducing its size. In contrast, statistical methods elimi…
NetBone: A Python Package for Extracting Backbones of Weighted Networks
2023
NetBone is a new open-source Python package designed to simplify analyzing complex networks. With a wide range of techniques available, Net-Bone allows researchers to extract the backbone of a network while preserving its essential structure. The package includes nine structural methods and five statistical techniques, offering users a comprehensive solution to network analysis. It is user-friendly and straightforward to use, with easy installation. The package accepts different types of inputs, including data frames or Networkx graphs, and provides evaluation measures for comparative purposes. Additionally, NetBone offers an option to generate plots. Its versatility makes it a valuable too…
Model Identification of a Network as Compressing Sensing
2013
In many applications, it is important to derive information about the topology and the internal connections of dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology, and unveiling an unknown structure as the estimate of a "sparse Wiener filter". A geometric interpretation of the problem in a pre-Hilbert space for wide-sense stochastic processes is provided. We cast the problem as the optimization of a cost function where a set of parameters are used t…
Reduced Complexity Models in the Identifi cation of Dynamical Networks: links with sparsi cation problems.
2009
In many applicative scenarios it is important to derive information about the topology and the internal connections of more dynamical systems interacting together. Examples can be found in fields as diverse as Economics, Neuroscience and Biochemistry. The paper deals with the problem of deriving a descriptive model of a network, collecting the node outputs as time series with no use of a priori insight on the topology. We cast the problem as the optimization of a cost function operating a trade-off between accuracy and complexity in the final model. We address the problem of reducing the complexity by fixing a certain degree of sparsity, and trying to find the solution that ``better'' satis…