Search results for "Speech processing"
showing 10 items of 210 documents
RECOGNIZABLE PICTURE LANGUAGES
1992
The purpose of this paper is to propose a new notion of recognizability for picture (two-dimensional) languages extending the characterization of one-dimensional recognizable languages in terms of local languages and alphabetic mappings. We first introduce the family of local picture languages (denoted by LOC) and, in particular, prove the undecidability of the emptiness problem. Then we define the new family of recognizable picture languages (denoted by REC). We study some combinatorial and language theoretic properties of REC such as ambiguity, closure properties or undecidability results. Finally we compare the family REC with the classical families of languages recognized by four-way a…
From Nerode's congruence to Suffix Automata with mismatches
2009
AbstractIn this paper we focus on the minimal deterministic finite automaton Sk that recognizes the set of suffixes of a word w up to k errors. As first result we give a characterization of the Nerode’s right-invariant congruence that is associated with Sk. This result generalizes the classical characterization described in [A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, J. Seiferas, The smallest automaton recognizing the subwords of a text, Theoretical Computer Science, 40, 1985, 31–55]. As second result we present an algorithm that makes use of Sk to accept in an efficient way the language of all suffixes of w up to k errors in every window of size r of a text, where r is the…
"Table 24" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 1500 GeV.
"Table 47" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 1000 GeV.
"Table 34" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 2500 GeV.
"Table 22" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 500 GeV.
"Table 52" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=80$ of mass 4000 GeV.
"Table 26" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 2500 GeV.
"Table 21" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=20$ of mass 200 GeV.
"Table 36" of "Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton-proton collisions with the ATLAS detector"
2019
Total selection efficiency (i.e., the fraction of MC HECOs surviving the trigger and offline selection criteria) as a function of transverse kinetic energy $E^\text{kin}_\text{T}=E_\text{kin}\sin\theta$ and pseudorapidity $|\eta|$ for HECOs of charge $|z|=40$ of mass 4000 GeV.